Impacts des activités humaines sur le cycle de l'azote et leurs contributions au changement climatique

Nicolas Vuichard Laboratoire des Sciences du Climat et de l'Environnement

Composition de l'atmosphère

- Le diazote, principal composant de l'atmosphère
- 3,8 milliards de TgN
- N₂, gaz inerte, peu réactif
- => Pas d'effet sur le climat

Azote réactif

- Formes biologiquement ou chimiquement réactives
 - Formes oxydées
 - Oxydes d'azote (NO, NO₂)
 - Protoxyde d'azote (N₂O)
 - Nitrate (NO₃⁻)
 - Formes réduites
 - Ammoniac (NH₃)
 / Ammonium (NH₄⁺)

Comment crée-t-on de l'azote réactif naturellement ?

Par fixation biologique

⇒ Formation de NH₄⁺ à partir de N₂
 Sur Terre: ~60 TgN par an
 Par les océans: ~140 TgN

- Par l'énergie des éclairs
 ⇒ Formation de NOx à partir de N₂ (~5 TgN par an)
- La dénitrification, un processus "inverse"
 - ⇒ Formation de N₂ à partir d'azote réactif

Le cycle de l'azote avant l'ère industrielle

 L'azote réactif est présent dans tous les compartiments de la biosphère

- Un nutriment essentiel pour la croissance des plantes
 => Ammonium et nitrate sont assimilés par les végétaux
- Une ressource longtemps
 limitée

L'azote, une ressource optimisée

Système agricole "mixte": culture / élevage

Transhumance d'hiver

L'azote, une ressource optimisée ... et convoitée

- Exploitation du guano, des îles Chincha (Pérou) durant le 19^{ème} siècle
- 1879-1884 guerre du Pacifique (guerre du salpêtre) entre le Chili et le Pérou – conflit pour le guano et salpêtre du désert d'Atacama

Récolte de guano (lles Chincha, Pérou)

La synthèse de l'ammoniac par le procédé Haber-Bosch

Fritz Haber (1868-1934) – Prix Nobel de Chimie 1918

- 1909 Invention du Procédé par Fritz Haber
- 1913 Contribution de Carl Bosh permit le début de production industrielle par BASF
- **1917** Deuxième usine à Leuna

Le procédé Haber-Bosch et la révolution agricole

European Nitrogen Assessment, 2011

Production globale d'azote réactif depuis 1850

 \bigcirc

La cascade de l'azote

Expertise scientifique collective INRA , 2012

La cascade de l'azote

Evolution des concentrations de GES dans l'atmosphère

Bilan global de N₂O 2007-2016 (TgN/an)

Université d'été de Sauvons le Climat - 2-5 Novembre 2021, Chinon

Tian et al., 2020

Emissions de line par les sols 1861–2016

Emissions de N₂O par les sols à l'échelle régionale

Les interactions entre NOx, ozone et méthane

- Rôle du radical hydroxyle (OH), « agent nettoyant » de l'atmosphère
 - NOx précurseurs de l'ozone troposphérique (O₃), gaz à effet de serre
 - Photolyse de l'ozone, source majeure de production de OH
 - Oxydation du méthane, puits de OH

Emissions de NOx par secteur

Emissions de NH₃ et formation d'aérosols secondaires

Schéma détaillant les voies de devenir de l'azote réactif dans l'atmosphère. Hertel et al., 2006

Emissions d'ammoniac par secteur

Contributions au réchauffement global

Contributions au réchauffement global

GIEC, AR6 WG1, résumé technique, 2021

Augmentation des dépôts atmosphériques d'azote

Sources et puits de CO₂

Puits biosphérique terrestre
 ~33% des émissions anthropiques

Friedlingstein et al., ESSD, 2019

Renforcement du puits biosphérique de C par les dépôts azotés

- Très forte perturbation anthropique du cycle de l'azote sur les 100 dernières années: +100% d'augmentation de création d'azote réactif !
- Emissions de multiples composés azotés (N₂O, NOx, NH₃) ayant différents impacts directs ou indirects sur le climat
- Interconnection des cycles du Carbone et de l'Azote, le cycle de l'azote a aussi un impact sur le cycle du carbone !

Quelques voies d'atténuation

Des productions plus efficientes

Rendement en fonction de la dose d'engrais azoté

1995

Nombre de porcs élevés par grandes régions

Des consommations plus sobres

Emissions de N₂O par kg de viande produit

1985

Université d'été de Sauvons le Climat – 2-5 Novembre 2021, Chinon

2005