SMRs MSRs & SMMSRs

Small (25 MWe up) reactors for near-term deployment – development well advanced

Name	Capacity	Type	Developer	
VBER-300	300 MWe	PWR	OKBM, Russia	
NuScale	50 MWe	PWR	NuScale Power + Fluor, USA	
Westinghouse SMR	225 MWe	PWR	Westinghouse, USA*	
mPower	180 MWe	PWR	Babcock & Wilcox + Bechtel, USA*	
SMR-160	160 MWe	PWR	Holtec, USA	
ACP100	100 MWe	PWR	CNNC & Guodian, China	
SMART	100 MWe	PWR	KAERI, South Korea	
PBMR	165 MWe	HTR	PBMR, South Africa; NPMC, USA*	
Prism	311 MWe	FNR	GE-Hitachi, USA	
BREST	300 MWe	FNR	RDIPE, Russia	
SVBR-100	100 MWe	FNR	AKME-engineering, Russia	

NuScale (2) Containment -(1) Reactor Pressure Vessel (4) Hot Leg Riser (3) Core

Factory Manufacturing

Shipped by Truck, Rail, or Barge

Skid-Mounted Steam Turbine/Generator

Control Room provides enhanced security and state-of-the-art controls

12 Module Reactor Building

Containment Reactor Vessel

Steam Generator

Fuel

Each Module is refueled underwater while the remainder of the plant produces power

- Refueled once every 24 months
- Capable of 48-month fuel cycle
- 10 day refueling target

Each Module Installed in its own Isolated Bay

- Natural Circulation (No Reactor Coolant Pumps)
- 37 Standard 17X17 PWR Fuel (Half-Height) Fuel Assemblies
- Standard Magnetic Jack Control Rod Drives
- Internal Helical Coil Steam Generators and Pressurizer
- 50 MWe Gross Power

O NuScale Power, LLC. All Rights Reserved.

A Nuclear Battery

- 2-3 MW output
- Completely passive
- No moving parts in reactor
- Sub-atmospheric pressure
- 12 year fuel lifetime
- Behaves like a thermal battery

PRISM

PRISM

- + 840 MWth & 311 MWe
- + Na cooled fast reactor
- + Passive safety
- + Modular/scalable
- + Factory built
- + Flexible fuel cycle (broad input composition)
- + Metal or oxide fuel (metal pref.)
- + Extensive component testing

S-PRISM - Three Power Block Plot Plan

Plant Construction and Deployment

Moved to transport ship (dry tow, 10-12 knots) or launched to sea (wet tow, 6 knots)

Designed for Superior Safety

Plant	Population within	Evacuation	Distance from major
	10-mi radius	plan	load center
Indian Point	~270,000	Yes	25 mi from NYC
OFNP NYC	0	No	<15 mi from NYC
Turkey Point	~160,000	Yes	21 mi from Miami
OFNP Miami	0	No	<15 mi from Miami

Build Nuclear Power Plants Like ULCC's

Ultra large crude carrier cost \$89M in 2001 Largest operating oil tankers in the world. Hellespont Alhambra, Tara, Fairfax, Metropolis Architected and managed by Jack Devanney

ThorConIsle
Each barge is 500 MWe
60% the size of ULCCs
Graphic shows two 500 MWe barges

Two ThorConIsles being serviced by

BUILD EVERYTHING ON AN ASSEMBLY LINE

Reactor yard produces 150--500 ton blocks. About 120 blocks per 1GWe plant.

Blocks are pre-coated, pre-piped, pre-wired, pre-tested.

Focus quality control at the block and sub-block level.

Blocks dropped into place, and welded together at the shipyard berth.

100% labor at factory

Hyundai shipyard in Ulsan, South Korea pictured below is sufficient to manufacture 30 GWe Power Ships (or 100GWe land based ThorCon) per year.

Safety status: walk-away safe

- Safety is **intrinsic** from physics, not add-on safety systems; overheating stops chain reaction.
- Any break will drain reactor fuel to cold shutdown fuel salt drain tank.
- Decay heat is removed by silo cooling wall continuous passive water circulation, even in power blackout.
- Radioactive fuel salt at low, garden-hose pressure can't disperse in catastrophe.
- Fluoride salt chemically **locks up** hazardous fission products iodine-131, cesium-137, strontium-90.

A Perfect Synergy

Operate at atmospheric pressure

Reliable baseload power 24/7

Speedy & massive deployment

Proliferation resistant

Designed for mass production

Zero emissions