The Integral Fast Reactor

tinyurl.com/9992kma

PRESCRIPTION FOR THE PLANET

The painless remedy for our energy and environmental crises

by Tom Blees

TINYURL.COM/QFHZJFE

The Story of the Integral Fast Reactor

The complex history of a simple reactor technology, with emphasis on its scientific basis for non-specialists

Positive proof of global warming.

Worldwide Sodium-Cooled Fast Reactor Experience

Country	Reactor	MWth/Mwe	Operations
	EBR-I	1/0.2	1951-63
U.S.	EBR-II	62.5/20	1964-94
	Fermi-1	200/61	1965-72
	FFTF	400	1980-92
	BR-5/10	8	1958-02
Russia	BOR-60	60/12	1969-
	BN-350	1000/150	1973-99
	BN-600	1470/600	1980-
	Rapsodie	40	1967-83
France	Phenix	563/250	1974-09
	SuperPhenix	3000/1240	1985-97
	Joyo	140	1978-
Japan	Monju	714/300	1993-
	DFR	72/15	1963-77
UK	PFR	600/270	1976-94
Germany	KNK-II	58/21	1972-91
India	FBTR	42.5/12	1985-
China	CEFR	65/20	2010-

Uranium utilization is <1% in current LWRs

IFR is self-sufficient after initial startup

THE ESSENTIALS OF AN ACTINIDE-CONSUMING FUEL CYCLE

1000 MWe power plant

NO LOOSE PLUTONIUM -- ANYWHERE!!

NO MORE ENRICHMENT OF URANIUM – EVER!!

THE INTEGRAL FAST REACTOR (IFR)

Fission gas pore structure of irradiated U-10Zr fuel

Figure 6-1. Schematic of metal fuel

Experimental Breeder Reactor-II

The first pool-type SFR started operation in 1964.

- Demonstrated recycle based on melt-refining from 1964-69: ~30,000 irradiated fuel pins were recycled with average turnaround time of 2 months from discharge to reload into the reactor.
- Successfully operated over 30 years: no steam generator tube leak, reliability of sodium components due to compatibility with sodium, etc.

4

dangerous activity is gone in 300 years

LWR Pyroprocessing Facility (100 T/yr)

Pyroprocessing provides economic fuel cycle closure and intrinsic proliferation resistance

Radiological Toxicity of LWR Spent Fuel

Pyroprocessing's Intrinsic Proliferation-Resistant Characteristics: Weapons Usability Comparison

	Weapon Grade	Reactor Grade	IFR Grade
	Pu	Pu	Actinide
Production	Low burnup	High burnup	Fast reactor
	PUREX	PUREX	Pyroprocess
Composition	Pure Pu	Pure Pu	Pu + MA + U
	94% Pu-239	65% Pu-fissile	50% Pu-fissile
Thermal power w/kg	2 - 3	5 - 10	80 - 100
Spontaneous neutrons, n/s/g	60	200	300,000
Gamma radiation r/hr at ½ m	0.2	0.2	200

Capital Cost for LWR Pyroprocessing Facility

The capital cost for the 100 ton/yr LWR pyroprocessing is estimated at:

Engineering	100	
Construction	120	
Equipment systems	100	
Contingencies	80	
Total	\$400	million

- Even if the equipment systems are duplicated without any further scale-up, a commercial scale (800 T/yr) would cost about \$2.5 billion, which is an order of magnitude less than equivalent aqueous reprocessing plants.
- The above is a very rough estimate based on experiences of the EBR-II FCF refurbishment (<\$50 million) and the Fuel Manufacturing Facility (\$4 million).

PRISM

