Laboratoire Catalyse & Spectrochimie

Captage et transport du CO₂ : les progrès de la recherche

A. Vimont & M. Daturi

ENSICAEN, Université de Caen, CNRS 6 bd du Maréchal Juin, 14050 Caen, France http://www-lcs.ensicaen.fr

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

Metal-Organic-Frameworks (MOFs)

Strong bonds (ionocovalent) : Inorganic moieties (cluster, chaîne, plan) + organic linker (carboxylate, phosphonate.. MOF-5 or Zn₄O(1,4 BDC)₃

Zn(II)

1,4-benzenedicarboxylic Acid

3D porous Structure

Yaghi et al. Nature, 402, 277 (1999)

Large specific surface areas : 500-4500 m²/g Excellent adsorbants

MOFs: a versatile class of porous solids Rigid Linkers

04/10/2008

CS The most common types of porous MOFs

MIL-101

HKUST-1

Metal Carboxylates

Metal Imidazolates

Metal Phosphonates

MOF-5

IR detailed analysis of MOF-type structures

Vimont et al., JACS 128 (2006) 3218 04/10/2008

 \bigcirc : anionic vacancy , F⁻, (OH)⁻, H₂O, H₂O..H₂O

Quantification:

- about 2 *cus* Cr^{3+} per trimer (3500 μ mol g⁻¹)
- F and OH group localized on the top of the third Cr³⁺ octahedron

CO₂ as a probe for acidity

Coordination of CO₂ molecules on Lewis acid sites

The higher the wavenumber the stronger the acidity

Preferential Adsorption modes of CO₂ on MIL 100 /101

A possible application: CO₂ sequestration ...

P. L. Llewellyn et al., *Langmuir* (2008) 04/10/2008

Adsorption of green house gases

Methane DOE Target (2010) 180 v/v 35 bars

Best materials are to date : Activated carbons Adsorb at RT Fast Kinetics Cheap Good volumetric Capacities (<200 v/v) Capture of CO_2

Amines : very selective but not very cheap (regeneration)
Zeolites (excellent selectivity but higher regeneration costs and limited capacity)
Activated Carbons : moderate

Selectivity and capacity

Metal-Organic-Frameworks ?

Moderate methane capacity but huge adsorption of 300-400 V/V at high Pressure of CO_2

S. Bourrelly et al., Langmuir 2008

11

MIL-101 capacity for CO₂ storage

^a Sample MIL-101 activated by EtOH + NH₄F treatments.

P. L. Llewellyn, S. Bourrelly, C. Serre, A. Vimont, M. Daturi, L. Hamon, G. De Weireld, J-S Chang, D-Y. Hong, Y. K. Hwang, S. H. Jhung, G. Férey '*High uptakes of CO*₂ and CH₄ in the mesoporous Metal-Organic-Frameworks MIL100 and MIL101', Langmuir, 2008

Possible application of MIL-CO2 affinity Carbon capture & geological storage CO₂ injection CO₂ transportation CO₂ capture **Gas** production 11 Compre CO₂ injection 000 10 0 0 \odot acc power plant Boiler oxycombustion Steam 20 4500 m CO₂ storage Purification / CO2 dehydration Vatural das Compression Oxygen 4 production 10 Natural inle Rousse reservoir Lacq gas production 4000 m Lacq deep gas reservoir Τοται

04/10/2008

Flexibles MOFs MIL-53(Cr, Al) (T=298 K)

Steps (flexible phase)

S. Bourrelly et al., J. Am. Chem. Soc. 2005; P.L. Llewellyn et al., Angew. Chem. 2006 C. Serre et al., Adv. Mater. 2007

CSXRD in situ analysis of the breathing of MIL-53 under pressure of CO₂

C. Serre et al., Adv. Mater., 2007

FT-IR in situ analysis of MIL-53 breathing under pressure of CO₂

Properties of "breathing" MOF structures

Cr

MIL-53 (Cr)

Hysteresis phenomenon observed during the adsorption-desorption cycle (curves obtained from the quantitative analysis of the IR spectra)

Variation of the intensity of the MIL53LP structural band (1017 cm⁻¹) and MIL53HP (1022 cm⁻¹), and that of the v_2 mode of CO₂ (653, 662 cm⁻¹ MIL53LP; 659 cm⁻¹ MIL53HP) versus CO₂ pressure.

Vimont et al., *Chem. Commun.* (2007) 3291 C. Serre et al., *Adv. Mater.* 19 (2007) 2246 ^{04/10/2008}

Modelling of framework- CO₂ interactions in MIL-53

Structure from XRPD

∠_____ 2.8 Å

2.8 Å

Simulated structure

N. Ramsahye, G. Maurin

C. Serre et al., Adv. Mater., 2007; N. Ramsahye, Chem. Comm., 2007

Future Research (adsorption) :

- ✓ New MOFs + understanding
- ✓ Stability (moisture, cyclability...)
- ✓ Large scale (pilot) tests using pelletized samples