Typologie des réacteurs

H.Nifenecker

Optimisation des energies des neutrons

- Probabilité relative de fission plus grande pour les neutrons lents
- Quantité de noyaux fissiles plus faibles pour les neutrons lents

MAIS

- Controle plus facile avec les neutrons rapides
- Surgénération plus facile avec les neutrons rapides

Neutrons disponibles

- v neutrons par fission de fissile
- η neutrons par capture de fissile

$$\eta = v \frac{\sigma_f}{\sigma_f + \sigma_c}$$

- · Bsoins:
 - 1 neutron pour la fission
 - 1 neutron pour la régénération
 - 0.2 neutrons perdus
- $(\eta-2.2)$ neutrons disponibles

Energie Nucléaire Durable

- Conditions pour la durabilité:
 - Incinération des actinides
 - Surgénération
 - Transmutation de Fragments de Fission à vie longue?
- Cycle Uranium-Plutonium
 - Spectre thermique

$$H = 2.11$$

$$n_{av} = 2.11 - 2.2 = -0.09$$

Spectre rapide

$$\eta$$
=2.61 n_{av} =2.61-2.2=0.41

- Cycle Thorium-Uranium
 - Spectre thermique

$$\eta = 2.28$$

$$\eta$$
=2.28 n_{av} =2.28-2.2=0.08

Spectre rapide

$$\eta = 2.3$$

$$\eta = 2.3$$
 $n_{av} = 2.30 - 2.2 = 0.1$

- Produire des fissions: Combustible
- •Extraire la chaleur: Caloporteur+ exchangeurs
- •Contrôle de la Réactivité : Barres, eau borée...
- Ajustement de la vitesse des Neutrons : ralentisseur

Modérateur Graphite

- 1. Magnox: caloporteur CO2 (metal U naturel)
- 2. AGR: caloporteur CO2 (UO2 enrichi 2,5-3,5%)
- 3. RBMK: caloporteur H2O (enrichi 2-2,4%)

Modérateur Eau lourde

1. CANDU:

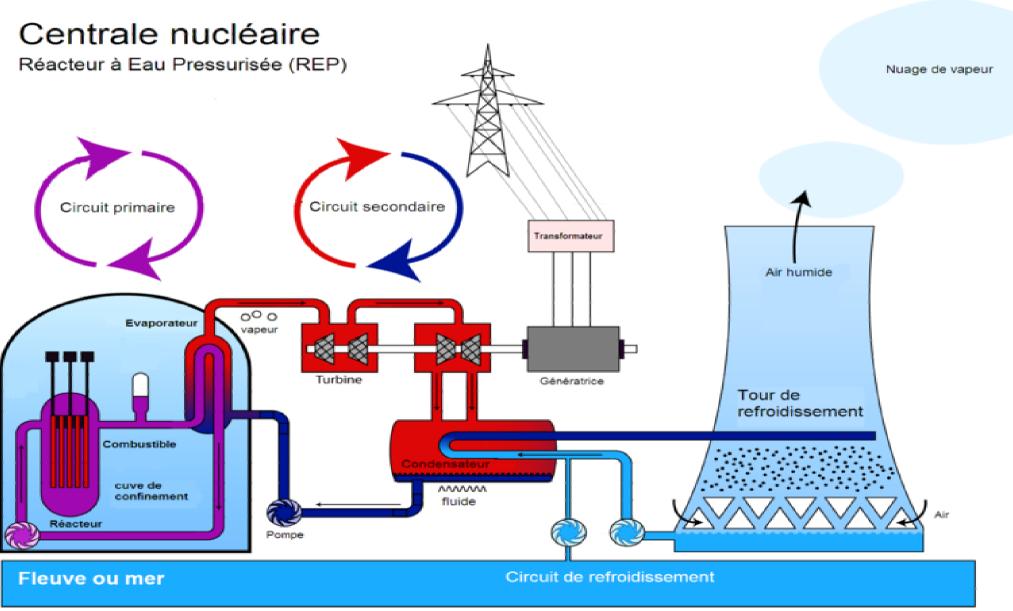
Caloporteur D2O

Uranium naturel

Enrichissement du combustible 3 à 5%

Modérateur H2O

Caloporteur H2O


1. REP: Eau Pressurisée

2. REB: Eau bouillante

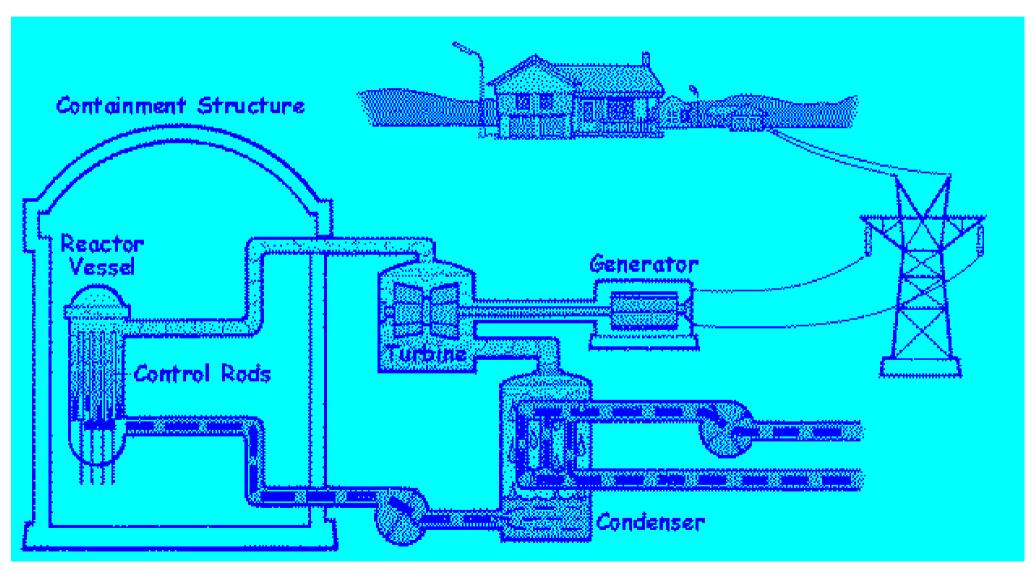
Modérateur Graphite

- 1. Caloporteur sel fondu, combustible sel fondu
- 2. Très Haute Température (boulets)

REP1

REP2

- -pression: 155 bar;
- -température : 300°C;
- -débit : 60 000 m³/h.
- -combustible: 235U enrichi 3-5%
- Combustible Mox possible: U238-Pu 5%
- Eau secondaire "propre"
- -Burnup >40000 MWd/tU


$$\frac{dk}{dT}$$
<0

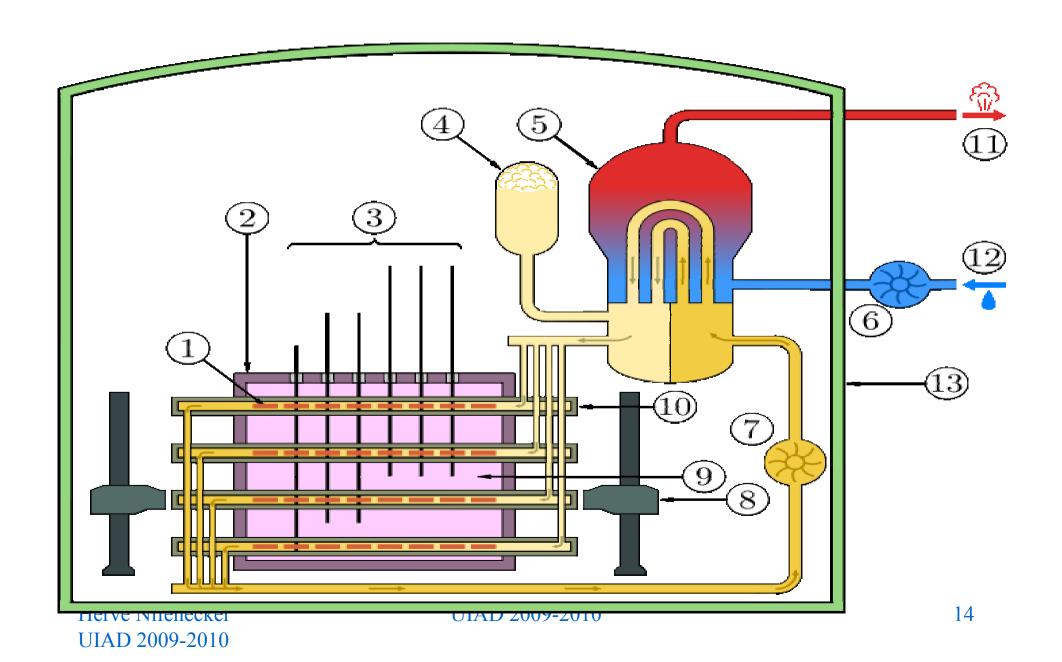
$$\frac{dk}{d\rho} > 0$$

REP3

- -Excursion fortement critique impossible L'ébullition arrête le réacteur
- La fusion du Coeur est possible à cause de la chaleur résiduelle
- -Production d'hydrogène par la réaction de la vapeur avec le Zr
- -Empêcher l'explosion hydrogène
- -Exemple: TMI

REB 1

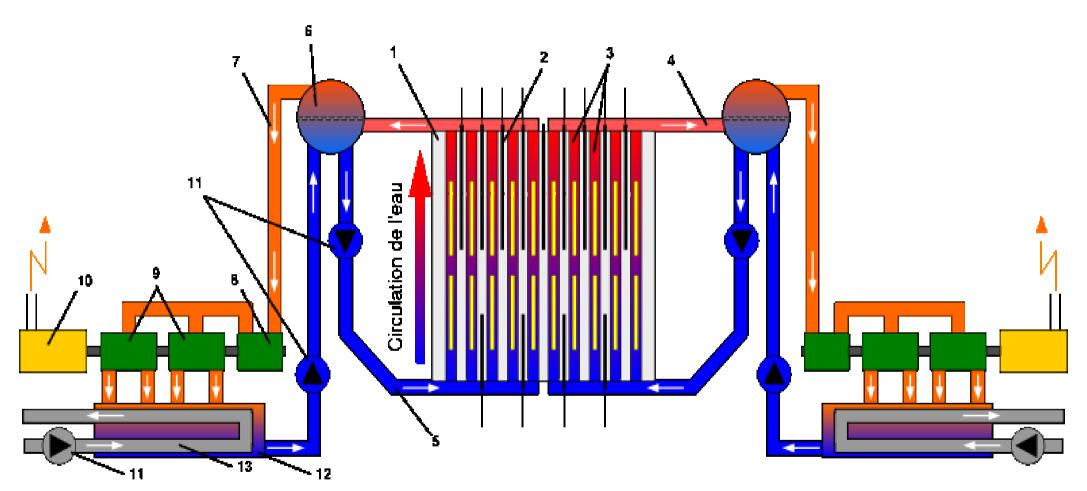
Hervé Nifenecker UIAD 2009-2010


REB 2

- -pression: 80 bars
- -pas d'echangeur
- -pas de circuit secondaire
- -Moins cher

Mais

- -Vapeur active
- système diphasique
- -Turbine active
- -interventions plus difficiles

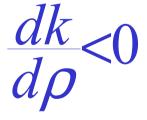

CANDU 1

CANDU 2

- •Modérateur: D2O
- •Caloporteur: D2O or H2O sous pression
- •Tubes de Force
- •Combutible: Uranium naturel possible Régénération Thorium?
- •Machine de re-déchargment marchant en ligne
- •Faible taus de combustion: 5 MWd/ton U
- •Proliférant Pk, In
- •Bon Paramètres de sûreté

RBMK 1

Légende :

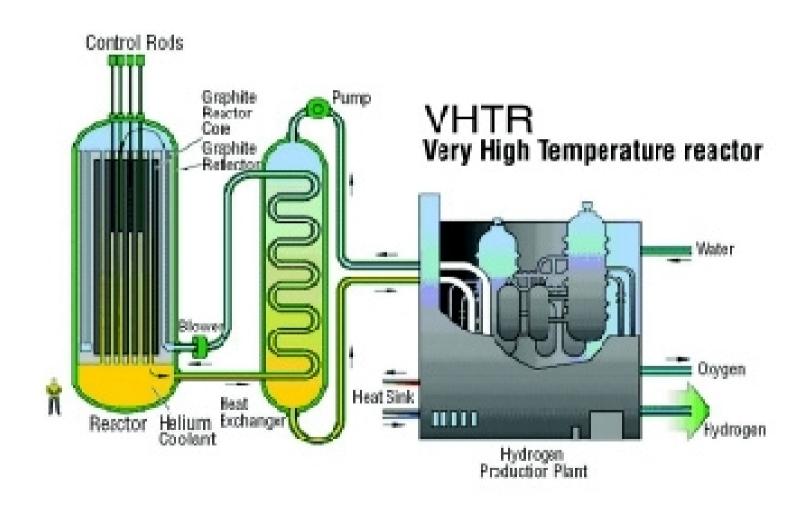

- Cœur du réacteur modéré au graph le
 Barres de contrôle
- 3 Tubes de force contenant le combustible 4 Mélange eau/vapeur 5 Eau (légère) 6 Séparateur de vapeur 7 Vapeur entrante

Hervé Nifenecker UIAD 2009-2010

- 8. Turbine a vapeur haute pression
- 9. Turbine à vapeur basse pression
- 10 Genératnos électrique
- 11. Pompes
- 12 Condensateurs
- 13 Eau de refin dissement (fleuve, mer. ...) $UIAD\ 2009-2010$

RBMK 2

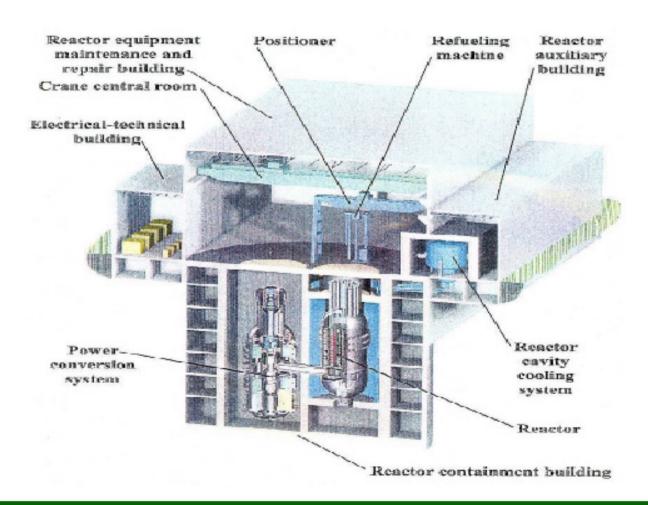
- •Modérateur: Graphite
- •Caloporteur: H2O sous pression
- •Tubes de force
- Combustible: Uranium enrichi
- •Machine de déchargement travaillant en ligne. Production de Pu Militaire
- Instabilité Xénon


Barres de contrôle mal conçues

Réacteurs à Gaz

Très Haute Température 1

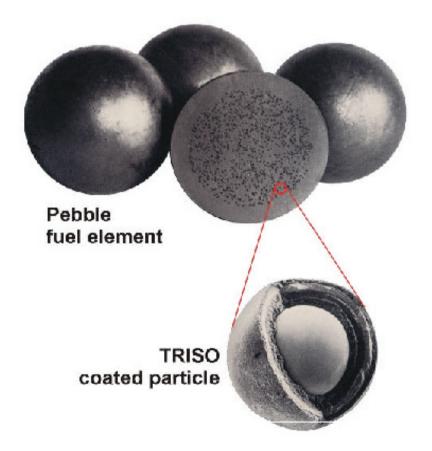
- •Combustible très réfractaire
- •Refroidissement d'urgence par radiation
- •Pas de fusion de coeur possible (petits réacteurs)
- •Très bon rendement
- •Co-génération électricité-chaleur
- •Production d'hydrogène
- •Fort taux de combustion
- •Non-proliférant
- •Retraitement difficile


Très Haute Température 2

Réacteur boulet

Technical Working Group 2 -- Gas Cooled Reactor Systems

Conceptual PMR

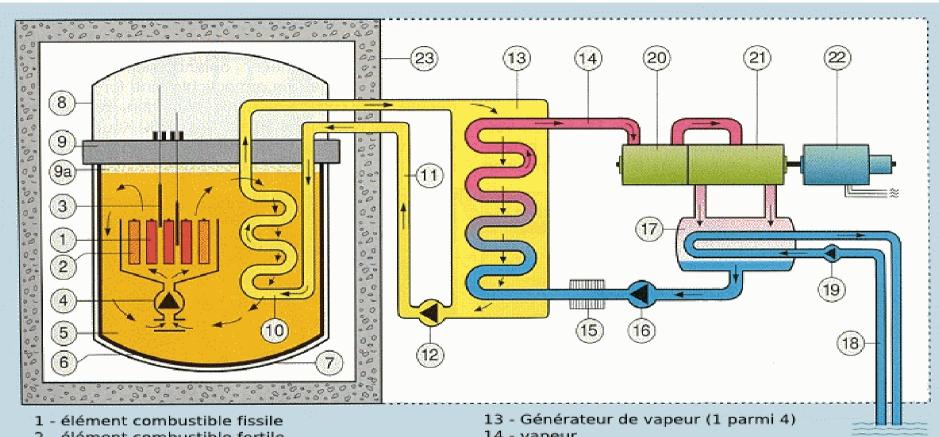


Combustible Boulet

Technical Working Group 2 -- Gas Cooled Reactor Systems

PBR Fuel

Pebbles are 60 mm



Réacteurs rapides 2

Surgénérateurs

- 1. Caloporteur Sodium Liquide BN600, BN800, Phénix, Monju...
- 2. Caloporteur Plomb fondu Sousmarins Russes
- 3. Caloporteur Gaz?

RNR Sodium 1

- 2 élément combustible fertile
- 3 barre de contrôle
- 4 pompe de circulation du sodium
- 6 cuve du réacteur (acier inoxydable)
- 7 cuve de sécurité
- 8 enceinte de confinement
- 9 couvercle
- 9a Atmosphère de gaz de protection (Argon)
- 10 échangeur de chaleur intermédiaire (1 parmi 4)
- 11 circuit de sodium secondaire
- 12 pompe de ciculation du sodium secondaire

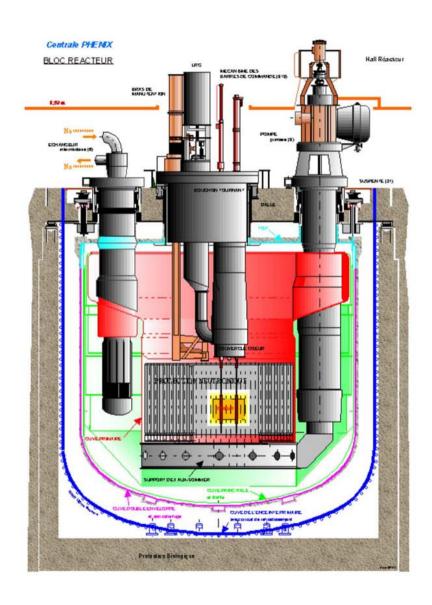
- 14 vapeur
- 15 pré-réchauffeur
- 16 pompe à eau d'alimentation
- 17 condenseur
- 18 eau de refroidissement (fleuve)

Fleuve

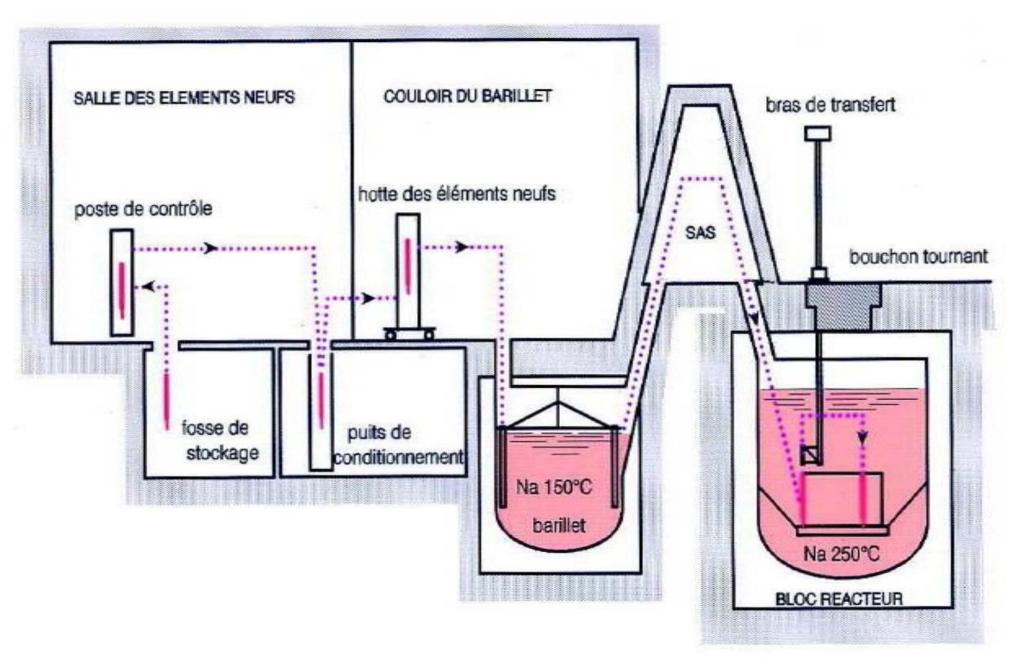
- 19 pompe à eau froide
- 20 turbine haute pression
- 21 turbine basse pression
- 22 génératrice
- 23 bâtiment réacteur

RNR2

- -pression: 2 bar;
- -température : 600°C;
- -Piscine.
- -Combustible: MOx U238, 14-20% Pu
- -Echangeurs Na-H2O
- Eau secondaire propre
- -Burnup > 120000 MWd/tU

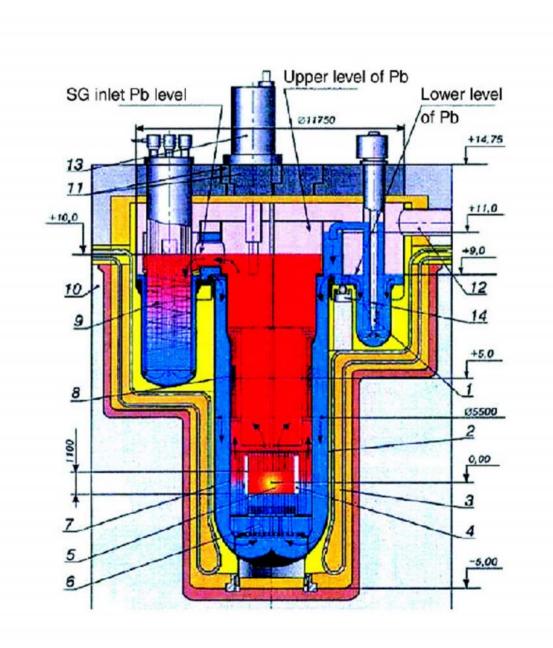

$$\frac{dk}{dT} < 0$$

$$\frac{dk}{d\rho}$$
<0


RNR3

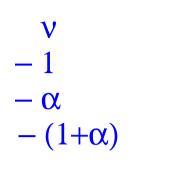
- -Grande inertie thermique de la piscine Na
- -Refroidissement passif residuel possible
- -Production d'hydrogène par réaction vapeur d'eau-Na
- -Eviter l'explosion hydrogène
- -Feu de Na

Phénix



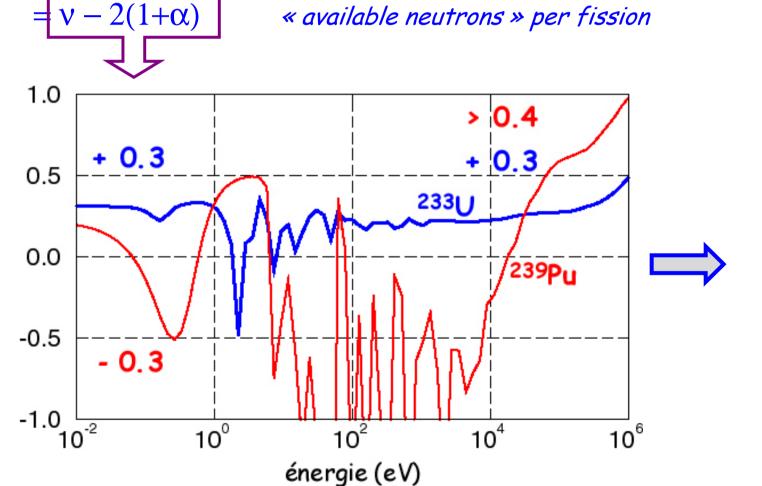
Chargement-déchargement Phénix

Réacteurs à plomb liquide


Réacteurs au Plomb

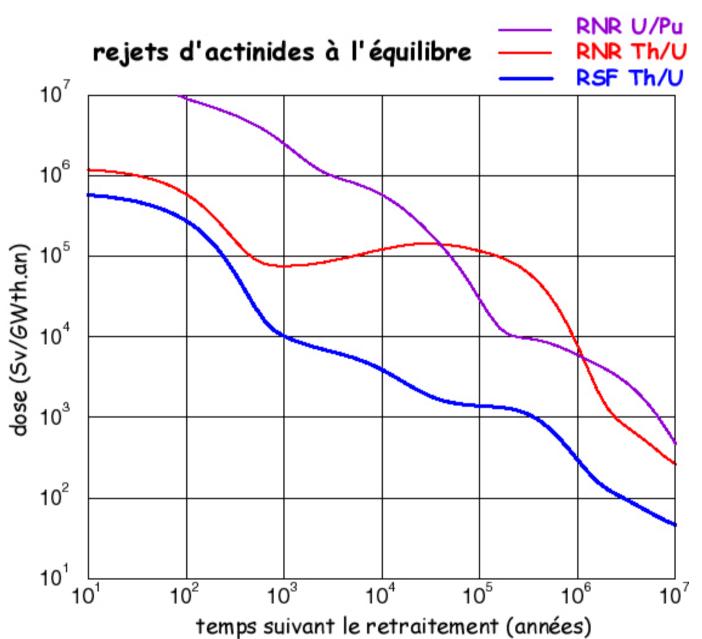
Réacteurs à sels fondus

FAST REACTORS OPERATIONAL DATA 2006


2006				
Reactor (country)	Thermal	First	Final	Operational
	Power	criticality	shut-down	period
	(M W)			(years)
EBR-I (USA)	1.4	1951	1957	6
BR-5/BR-10 (Russia)	8	1958		44
DFR (UK)	60	1959	1977	18
EBR-II (USA)	62.5	1961	1991	30
EFFBR (USA)	200	1963	1972	9
Rapsodie (France)	40	1967	1983	16
BOR-60 (Russia)	55	1968		38
SEFOR (USA)	20	1969	1972	3
BN-350 (Kazakhstan)	750	1972	1999	27
Phenix (France)	563	1973		33
PFR (UK)	650	1974	1994	20
JOYO (Japan)	50-75/100	1977		29
KNK-II (Germany)	58	1977	1991	14
FFTF (USA)	400	1980	1993	13
BN-600 (Russia)	1470	1980		23
SuperPhenix (France)	3000	1985	1997	12
FBTR (India)	40	1985		21
MONJU (Japan)	714	1994		12
BN-800 (Russia)	2000	Under construction		
CEFR (China)	65	Under construction		
PFBR (India)	1250	Under construction		
Total All Fast Re			373	

- neutrons per fission
- Needed for chain reaction
- Parasitic capture on fissile
 - fertile capture for regeneration

- (2.5)
 - (0.1)
 - (1.1)


(0.3)

U/Pu cycle
Fast neutrons

or

Th/U cycle (fast or thermal)

- Actinide Radiotoxicities

· radiotoxicities

$$R(t) = \sum_{i} r_{i} \lambda_{i} N_{i}(t)$$

 $r_i = dose factor (Sv/Bq)$

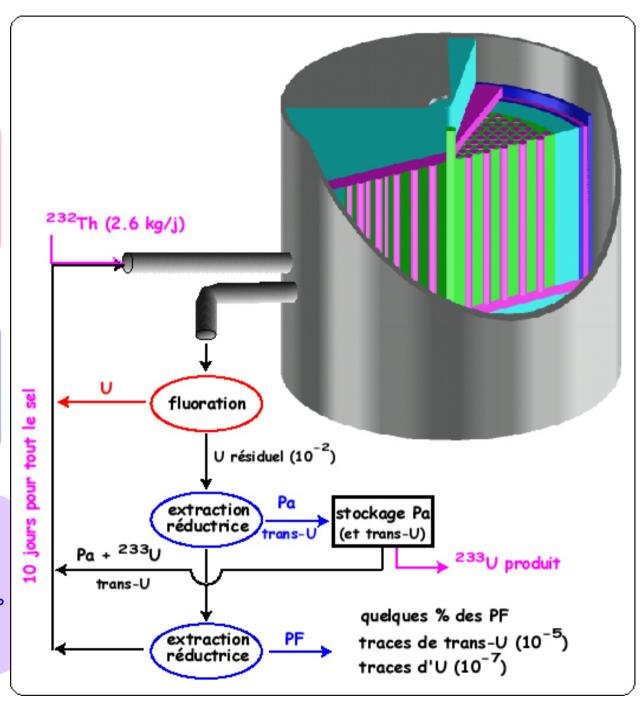
Combustibles Liquides

- Mélanges d'Actinide, fluorures de Berylium et Lithium.
 - Extraction (Quasi)continue des F.F. et alimentation de Fertile-Fissile
 - Contrôle de la réactivité
 - Très bonne sûreté envers les accidents de criticité
 - Possibilité d'incinération des fissiles sans régénération à partir des fertiles
 - Faible inventaire possible pour de systèmes thermiques
- Technique mal documentée
- Les contraintes de sûreté difficiles?

Generation IV Roadmap TW-4, Non-Classical

Molten Salt Reactor Off-gas System Primary Secondary Salt Pump Salt Pump NaBF₄-NaF Coolant Salt 454°C 621℃ 704℃ → Purified Salt Graphite Moderator Reactor Heat Exchanger 566°C Chemical 7LiF-BeF₂-TF ₄-UF Steam Generator Processing Fuel Salt Plant 538℃ Freeze Plug Turbo-Generator Critically Safe, Passively Cooled Dump Tanks (Emergency Cooling and Shutdown)

Retraitement


RSF

- Reprocessing : 3 steps

- U Fluoration
 - $UF_4 + F_2 \rightarrow UF_6$ volatile
 - 99% U extraction
- Procédé intéressant
 - Minimisation of U inventory
- Pa+trans U extraction
- ²³³Pa désintégration
 - 3 × 27 jours minimum
 - Bred ²³³U extraction

_

- FP Extraction (T = 10 j)
 - helium bullage (gaz)
 - -Extraction Reductrice
 - Terres rares jusqu'à 20%
 - Th laissé dans le sel
- Addition de Th

Etude Paramétrique

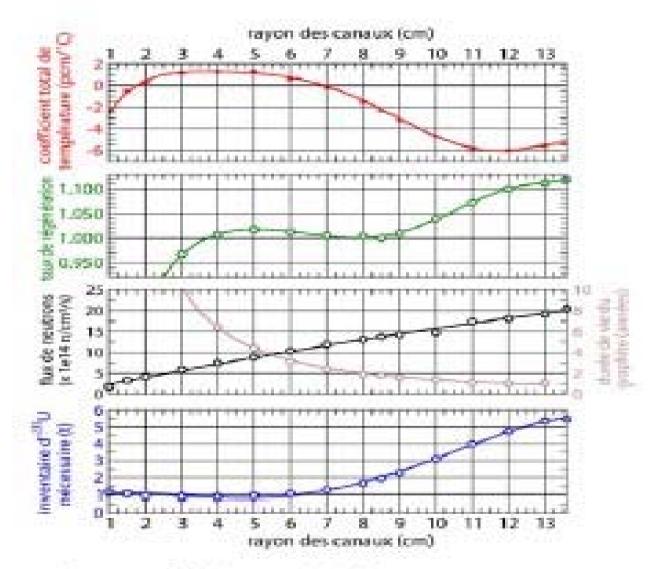
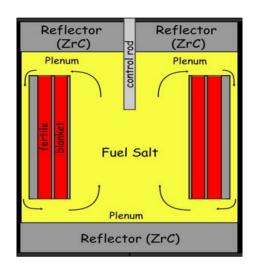
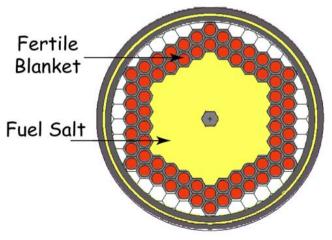




Figure 2 : Évolution de différents paramètres en fonction du rayon des canaux de sel.

Réacteurs à sels fondus et neutrons rapides

- · Pas de graphite:
- Sûreté Passive:
 pas de réserve
 fissile, très bons
 coefficients
- Retraitement en ligne simple, charge initiale Pu-AM possible

Génération IV

Partenaires:

- •Argentina
- •Brasil
- •Canada
- •Chine
- •France
- •Japan
- •Russie
- •South Africa
- South Corea
- •USA
- •UK
- •UE

Intérêt: Inde

Conditions à remplir

- Sûreté
 - >Systèmes pardonnants
 - >Systèmes passifs
 - **Confinement**
- Non prolifération
 - Pas de matériel fissile pur dans le cycle
- •Résistance au terrorisme
 - **≻**Sûreté
 - >Transports
- •Minimiser la production de déchets
 - Minimisation de la production de Transuraniens
- •Optimiser l'utilisation du combustible
 - > Grand taux de combustion
 - > Surgénération

Types de Réacteurs

- •Réacteurs à eau:
 - Eau supercritique
 - ➤ Tubes de force
- •Réacteurs à gaz
 - Neutrons lents, très haute température
 - Neutrons rapides, surgénérateurs U-Pu, Th-U
- •Réacteurs refroidis par métal liquide
 - Sodium liquide, U-Pu, Th-U surgénérateurs
 - ► Plomb (Bismuth) fondu U-Pu, Th-U
- •Réacteurs à sel fondu
 - > neutrons lents, surgénarateurs Th-U
- •Reacteurs hybrides
 - > Accélérateur, sous-criticité