Le Charbon, le gaz et leur usage:
Réactions

\[C + O_2 \rightarrow CO_2 + 4,08 eV \]

\[CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O + 8,37 eV \]

\[2H_2 + O_2 \rightarrow 2H_2O + 5,02 eV \]

\[2C_4H_{10} + 13O_2 \rightarrow 8CO_2 + 10H_2O + 49,7 eV \]

\textit{énergie par CO}_2=6,21 eV

Expression en kcal/kg:

\[C + O_2 \rightarrow CO_2 + 8000 kcal/kg \]

1 \textit{kep}=10000 kcal
Unités

- 1 Tep = 10034 Mcal = 42 GJ = 11,7 Mwh
- 1 Tec = 7000 Mcal = 29 GJ = 0,69 Tep
- 1 Baril de pétrole (bbl) = 159 litres = 136 kg
- 10^9 BTU = 1055 GJ = 25 tep
- 10^6 m3 gaz naturel = 0,855 tep
TPES vs Electricité

Graphique montrant la composition des sources d'énergie en TPES et en Electricité, avec des barres en bleu pour TPES et en marron pour Electricité.
% electricité/technique

![Bar graph showing the percentage of electricity from different sources: Total, Pétrole (Petroleum), Charbon (Coal), Gaz (Gas), Ren. (Renewable), Nucléaire (Nuclear), Hydro (Hydro)].
CO2 par combustibles fossiles

Emissions de CO2 pour la production d'énergie avec différents combustibles fossiles

![Bar chart showing emissions of CO2 per kWh for different fossil fuels: coal, oil, gas, coal cogeneration, oil cogeneration, and gas cogeneration. The chart indicates the comparative emissions for each type.](chart.png)
Le Gaz
Transport du gaz

• Gazoducs:
 – 10 à 120 cm de diamètre
 – 105 bars, recompression
 – 1 millions de kms

• Méthaniers
 – Liquéfaction: -162 degrés.
 – 400 M€ pour 3,5 millions de tonnes
 – Navires cryo. 100000 tonnes=200 M€
Cycles combinés
Cycle Combiné à Gaz
Le Charbon

• Les avantages:
 ➢ Abondant
 ➢ Bien réparti
 ➢ Bon marché
• Les inconvénients
 ➢ Polluants atmosphériques (SO2, poussières)
 ➢ Cendres radioactives
 ➢ Rejets de CO2
Usages du charbon

• Electricité: 60%
• Sidérurgie: 15%
• Cimenteries: 5%
• Chauffage et autres: 20%
Composition typique du charbon

- Charbon ss.: 68%
- Eau: 12%
- Volatiles: 10%
- Minéraux: 10%
Pouvoir calorifique charbon

- Pouvoir Calorifique Supérieur (kcal/kg)
 \[PCS = 80C + 340(H-O/8) + 20S \] (% de masse)
- Pouvoir Calorifique Inférieur
 \[PCI = PCS - (67H + 6Tm) \] Tm humidité en %
 - Chaleur latente H2O = 600 kcal/kg
Types de charbon

<table>
<thead>
<tr>
<th></th>
<th>Tourbe</th>
<th>Lignite</th>
<th>Flambant sec</th>
<th>Flambant gras</th>
<th>Gras</th>
<th>Anthracite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pouvoir calorifique kcal/kg</td>
<td>1000-1500</td>
<td>3500-4500</td>
<td>4500-6500</td>
<td>6500-7800</td>
<td>6500-7800</td>
<td>7800-8500</td>
</tr>
<tr>
<td>Humidité %</td>
<td>>50%</td>
<td>25-50%</td>
<td>14-25%</td>
<td>5-10%</td>
<td>5-10%</td>
<td>1-6%</td>
</tr>
<tr>
<td>Teneur en cendres</td>
<td>50%</td>
<td>30-50%</td>
<td>20-30%</td>
<td>10-20%</td>
<td>10-20%</td>
<td>0-10%</td>
</tr>
</tbody>
</table>
Réserves de charbon

La table suivante récapitule les réserves de charbon et de lignite dans différentes régions du monde, selon les données de l'IEA pour l'année 2000.

Unité = Gt

La unité de mesure utilisée est le Giga-tonne (Gt) ou gigatonne.

Réserves (source IEA 2000)

<table>
<thead>
<tr>
<th>Région</th>
<th>Charbon</th>
<th>Lignite</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amérique du Nord</td>
<td>116</td>
<td>139</td>
<td>256</td>
</tr>
<tr>
<td>Amérique du sud et centrale</td>
<td>8</td>
<td>14</td>
<td>21</td>
</tr>
<tr>
<td>Europe centrale</td>
<td>41</td>
<td>80</td>
<td>122</td>
</tr>
<tr>
<td>Ex URSS</td>
<td>97</td>
<td>132</td>
<td>230</td>
</tr>
<tr>
<td>Moyen Orient</td>
<td>0,2</td>
<td>0</td>
<td>0,2</td>
</tr>
<tr>
<td>Afrique</td>
<td>61</td>
<td>0,2</td>
<td>61</td>
</tr>
<tr>
<td>Australie</td>
<td>47</td>
<td>43</td>
<td>90</td>
</tr>
<tr>
<td>Chine</td>
<td>62</td>
<td>52</td>
<td>114</td>
</tr>
<tr>
<td>Autres Asie Pacifique</td>
<td>75</td>
<td>12</td>
<td>87</td>
</tr>
<tr>
<td>Total Monde Mt. Métriques brutes</td>
<td>509</td>
<td>474</td>
<td>984</td>
</tr>
<tr>
<td>Ressources million tonnes métriques brutes</td>
<td>5508</td>
<td>1160</td>
<td>6668</td>
</tr>
<tr>
<td>Ratio réserves/ressources</td>
<td>9%</td>
<td>41%</td>
<td>15%</td>
</tr>
</tbody>
</table>
Pays exportateurs

<table>
<thead>
<tr>
<th>Exportateurs</th>
<th>Importateurs</th>
<th>Europe</th>
<th>Japon</th>
<th>Autre Asie</th>
<th>Amérique</th>
<th>Total Monde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australie</td>
<td>29,7</td>
<td>78,5</td>
<td>53,8</td>
<td>2,2</td>
<td>171,6</td>
<td></td>
</tr>
<tr>
<td>RSA</td>
<td>42,8</td>
<td>3,1</td>
<td>14,8</td>
<td>2,2</td>
<td>66,2</td>
<td></td>
</tr>
<tr>
<td>Canada</td>
<td>6,3</td>
<td>14,3</td>
<td>8</td>
<td>3,1</td>
<td>33,7</td>
<td></td>
</tr>
<tr>
<td>Indonésie</td>
<td>7,3</td>
<td>13,2</td>
<td>28,9</td>
<td>3,2</td>
<td>54,1</td>
<td></td>
</tr>
<tr>
<td>Colombie</td>
<td>19,6</td>
<td>0</td>
<td>0</td>
<td>6,5</td>
<td>29,6</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>105,7</td>
<td>109,1</td>
<td>105,5</td>
<td>17,2</td>
<td>355,2</td>
<td></td>
</tr>
</tbody>
</table>
Détail des coûts

Prix de revient du charbon vapeur exporté

<table>
<thead>
<tr>
<th></th>
<th>Australie</th>
<th>RSA</th>
<th>Colombie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coût direct mine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mini</td>
<td>10</td>
<td>12</td>
<td>17</td>
</tr>
<tr>
<td>Maxi</td>
<td>30</td>
<td>17</td>
<td>25</td>
</tr>
<tr>
<td>Moyen</td>
<td>22</td>
<td>15</td>
<td>21</td>
</tr>
<tr>
<td>Amortissements</td>
<td>5</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Coût complet mine</td>
<td>27</td>
<td>19</td>
<td>25</td>
</tr>
<tr>
<td>Transport terrestre</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>Coût portuaire</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Coût direct FOB</td>
<td>28</td>
<td>23</td>
<td>28</td>
</tr>
<tr>
<td>Coût complet FOB</td>
<td>33</td>
<td>27</td>
<td>32</td>
</tr>
<tr>
<td>Fret vers Europe</td>
<td>14</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Fret vers Japon</td>
<td>8</td>
<td>12</td>
<td>10</td>
</tr>
<tr>
<td>Fret vers USA</td>
<td>10</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>Coût CIF Europe</td>
<td>47</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>Coût CIF Japon</td>
<td>41</td>
<td>39</td>
<td>42</td>
</tr>
<tr>
<td>Coût CIF USA</td>
<td>43</td>
<td>38</td>
<td>36</td>
</tr>
</tbody>
</table>
Centrale Charbon Conventionnelle
Le charbon propre

SO2:
- charbon à faible taux de S ou
- Réaction avec la chaux (production d’un sulfate)

NOx:
- Températures de flamme < 1300 d° (Lit fluidisé)

Poussières:
- Filtres
Procédés

• Injection de charbon pulvérisé (PCI) : flamme 1400 d°. Standard
• Lits fluidisés: flamme 900 d°. Propres
• Gazéification: réaction vers 1500 d° avec air (oxygène) et eau. Production d’un mélange H2, CO, CO2
• Liquéfaction. Production de combustibles liquides pour environ 25$/baril. Par exemple Fisher-Tropsch
Centrale avec désulfuration
Procédés 2

Gaz de synthèse:
exemple (dépend du mélange O2+H2O)

\[
\begin{align*}
C + \frac{1}{2}O_2 &\rightarrow CO + 108 \text{ J} \\
C + H_2O &\rightarrow CO + H_2 - 121 \text{ J} \\
2C + H_2O + \frac{1}{2}O_2 &\rightarrow 2CO + H_2 - 13 \text{ J.}
\end{align*}
\]

Fischer-Tropsch: catalyseurs Fe ou Co

\[CO + H_2 \rightarrow C_nH_{2n} + \frac{n}{2}O_2\]
Centrale cycle combiné gazéification intégrée
I. Capture et stockage du CO2
Fossiles sans CO2

• Capture du CO₂
 – Post-combustion C+O₂ → CO₂+Energie
 – Pré-combustion C+H₂O → H₂+CO
 \[H₂ + \frac{1}{2}O₂ \rightarrow H₂O+Energie \]
 \[CO + \frac{1}{2}O₂ \rightarrow CO₂+Energie \]
 – Elimination du N₂ avant (oxy-combustion)

• Séquestration
 – Anciens gisements pétroliers et gaziers (250 Gt?)
 – Anciennes mines de charbon (5 GtC)
 – Nappes salines aquifères (250 GtC?)
Fossiles sans CO2

• Deux expériences: **Sleipner, Weyburn**
• Surconsommation énergétique: à 15% (MEDD)
• Surcoût kWh: à 100% (Charbon pulvérisé), à 50% (gaz)
• Surcoût investissement: 80% (Charbon pulvérisé), 100% (gaz)
Type de stockage

Les différents types de stockage géologique
Captage stockage Lacq