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Abstract: A rapid development of nuclear energy production reaching 
173 EJ/y in 2060 and 605 EJ/y in 2110 limits the Global Mean Surface 
Temperature (GMST) increase to 1.5°C with respect to preindustrial value, 
with a reduction of the stored carbon dioxide from 800 Gt in the original 
MESSAGE-Efficiency scenario to 275 Gt in the present one, while multiplying 
by 6 the Total Primary Energy Supply between 2015 and 2110. 

Keywords: climate warming; nuclear energy; carbon dioxide emissions; 
carbon capture and storage; bio energy; renewable energies. 
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1 Introduction 

To limit the increase of Global Mean Surface Temperature (GMST) with respect to the 
pre-industrial period to 1.5°C, as required by the IPCC following the Paris COP21 
conference, the CO2 budget is limited to 600 Gt CO2 (Figueres et al., 2017; IPCC 
COP19, 2013). Figueres et al. (2017) propose an emission profile peaking around 43 Gt/y 
in 2025. To determine if such an objective is realistic, we use, as a reference, the scenario 
MESSAGE Efficiency of the GEA (2012) (Global Energy Assessment) which respects 
the RCP 2.6 as defined by the IPCC for limiting the increase of the GMST to 2°C. 
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2 The MESSAGE-efficiency scenario 

The MESSAGE framework developed by the Vienna IIASA1 (IIASA, 2012),2 includes 
three scenarios fulfilling the 2.6 W/m2 Representative Concentration Pathway as required 
by the IPCC (2014) in its fifth report (AR5). Scenario ‘Supply’ with a high energy 
consumption, scenario ‘Efficiency’ which implies the end of nuclear energy, paid by a 
decrease of energy consumption by 45% with respect to the “Supply scenario”, and the 
intermediary ‘MIX scenario’. All scenarios assume an extensive use of Carbon Capture 
and Storage, up to 24 Gt CO2/y in 2100 for the Supply scenario and 15 Gt CO2/y for the 
Efficiency scenario. Since the success of the CCS technology is far from being 
guaranteed at this level, we have offered an alternative by assuming a fast and important 
development of nuclear power in the Supply-N and Mix-N scenarios which followed the 
RCP 2.6 without necessity of CCS. This work has been published in IJGEI (Berger et al., 
2017). The article was published before the Paris COP21 conference. The RCP 2.6 
condition led to an increase of the Global Mean Surface Temperature (GMST) limited to 
2°C with respect to pre-industrial conditions. Following the COP21 it was decided by the 
IPCC to lower the increase of the GMST to a maximum of 1.5°C (approximately RCP 
1.9). Due to lack of time we have chosen to test our “high nuclear” approach with the 
MESSAGE Efficiency scenario transforming it from a no-nuclear to a high-nuclear 
scenario. The main reason for this “paradoxical” move was that Efficiency was the most 
sober scenario, thus improving the prospect to obtain a scenario agreeing with the new 
IPCC recommendations. 

Figure 1 shows that the gross CO2 emissions (addition of net emissions and CCS 
mass) should vanish around 2110. Carbon Capture and Storage has an important role in 
order to decrease the amount of CO2 remaining in the atmosphere. Figure 1 also shows 
the evolution of the mass of CO2 stored annually, as proposed in the “Efficiency” 
scenario. It reaches 15 Gt/y at the end of the century, with a fast rise beginning around 
2050. In 2100 most of the CCS mass comes from bioenergy production (BECCS). The 
cumulated amount of stored CO2 reaches 800 Gt by the end of the century. Whether it 
will be possible to store such a huge mass of CO2 remains to be seen. Even if the 
technology proves to be effective, the amount of CO2 present in the atmosphere will 
increase by 1100 Gt in 2100, while, if the CCS technology is not developed this 
additional amount will reach 1900 Gt, three times more than the allowed CO2 budget. 
Berger et al. (2017) have shown that a rapid and significant development of nuclear 
production would be effective in reducing the use of fossil fuels and related CO2 
emissions. In the following, we keep the rate of increase of nuclear power described by 
Berger et al. (2017). 

We name the present scenario “Efficiency-N”. Figure 2 shows the increase of nuclear 
production over time. From 2030 to 2050 the newly built nuclear power would amount to 
2700 GWe, an average annual growth of 135 GWe of new capacity. This appears to be a 
very large number. However, this is comparable to the rate obtained in France in the 
1980s. Electricity production in France was around 400 TWh. In the present scenario 
electricity production would be around 26000 TWh, i.e. 65 times more than in France. 
Assuming a building rate proportional to the electricity production the 2700 GWe built in 
20 years translates into 40 GWe while France built its 60 GWe reactors fleet in the same 
period.  

 
 



   

 

   

   
 

   

   

 

   

   248 A. Berger et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

Figure 1 CO2 emissions (Gross and Net) and CCS mass (total and biomass energy) for scenario 
efficiency. With respect to the original scenario we have moved the time reference by 
10 years 

 

Figure 2 Nuclear power common to MESSAGE Supply-N, Mix-N and Efficiency-N scenarios 
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We have made the initial assumption that each MWh of new nuclear production replaces 
2.7 MWh of fossil production according to the primary substitution rule given by the 
GEA program. This substitution is obtained first by switching fossil driven electricity 
production to the nuclear driven one, then switching heat production by fossils 
(especially natural gas) to electricity, and, finally, fossil mobility (gasoline, diesel, 
natural gas) to electric mobility. 

Under these assumptions we obtain a prompt disappearance of the fossil component 
as seen on Figure 3. Fossils would stop being used in the energy sector by 2060. 

Figure 3 Fossil consumption for the Efficiency and Efficiency-N scenarios (1 EJ = 1018 
Joules = 277 TWh = 24 Mtep) 

 

The disappearance of fossil contributions in the energy sector is expected to lead to a 
similar behaviour of CO2 emissions, as shown on Figure 4. On the figure the standard 
“Efficiency” emissions are shown with and without CCS. For Efficiency-N CO2 
emissions are displayed when there is no CSS and, also when CSS is applied only to 
biomass energy. 

On Figure 4 the negative emissions result from the balance between fossil emissions 
and CCS of biofuels. Indeed the combustion of biofuels is considered to be emission free 
as long as the burnt biomass is equivalent to biomass growth. Therefore, the stored CO2 
captured from biomass combustion is subtracted from the atmospheric CO2 content.  

The cumulated emissions resulting from the annual emissions of Figure 4 are shown 
on Figure 5. 

The nuclear scenario Efficiency-N leads to a stabilisation of the atmospheric CO2 
content without the need of CCS. It limits the increase of the CO2 content to 800 Gt, only 
200 more than the 600 Gt which climatologists say would allow to limit the GST increase 
to 1.5°C. Insofar as the CO2 content is stabilised (zero anthropic emissions) for some 
time it will start decreasing due to increased absorption by the Ocean and terrestrial 
biomass. One may expect that the preindustrial level of CO2 atmospheric concentration 
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might be reached again late in the 22nd century. This “back to normal“ behaviour might 
be accelerated by good biomass management. 

Figure 4 Annual CO2 emissions for the original scenarios Efficiency with and without CCS and 
for Efficiency-N without and with BECSS. Note that the three scenarios peak around 
37 Gt/y, lower than the recommendation of Christina Figuerres et al. 

 

Figure 5 Cumulated CO2 emissions with and without CCS 
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3 Biomass CO2 capture and storage for cooling the atmosphere 

In the MESSAGE efficiency scenario, biomass produces 220 Ej/y in 2100, mostly for 
transportation. Almost half of this CO2 is supposed to be captured and stored. Assuming 
emission of 80 Mt CO2 per EJ produced by biomass combustion, one obtains the 
evolution of the mass of carbon dioxide stored annually due to biomass combustion as 
shown on Figure 6. This mass has to be subtracted from anthropic CO2 emissions. The 
result of this operation is also shown on Figure 5. The condition corresponding to the 
limiting global mean surface temperature (GMST) to 1.5°C above the pre-industrial level 
is fulfilled at 600 Gt on a decreasing trend. The stored CO2 amounts to 280 Gt when CCS 
is only applied to Bio Energy compared to 800 Gt in the original MESSAGE-efficiency 
scenario. 

Figure 6 Evolution of the mass of CO2 stored from applying CCS to Biomass energy in 
MESSAGE Efficiency scenario 

 

4 Use of nuclear surplus  

The use of fossil fuels disappears around year 2060 as seen on Figure 3. The continuous 
use of excess nuclear production is not strictly required after this date for the sake of 
reducing CO2 emissions. The two possible options of limiting nuclear production or not 
are shown on Figure 7. 

The two choices lead to the same CO2 emission patterns. Differences may appear 
concerning the global energy consumptions as shown on Figure 8. The figure shows the 
evolution of the Primary Energy Supply (TPES) when nuclear production is limited to 
93 EJ/y and when there is no limitation. In this case the TPES is almost twice as high as 
when nuclear energy production is limited to 93 EJ/y. It is to be noted that, in this last 
case, the TPES is practically the same as that of the nonnuclear version of Efficiency. 
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This is due to the fact that we have used the substitution convention whereby 1 MWh 
nuclear produced is equivalent to 2.7 MWh of fossil primary energy. 

Figure 7 Possible developments of nuclear production in the Efficiency-N scenario. The limited 
nuclear production meets the 1.5°C limit in the MESSAGE-efficiency-N scenario. The 
full production allows higher energy production as compared to that of the original 
MESSSAGE efficiency scenario, or alternatively to decrease the contribution of 
renewable energies 

 

Figure 8 Total Primary Energies (direct convention) for the original Efficiency scenario and the 
scenarios Efficiency-N with and without limitation of the nuclear capacity 
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Excess heat from nuclear power could be used to carbonise biomass and store the so-
produced Carbon in former coal mines, for example. Economically it would probably be 
necessary to fix a price to such stored carbon so that the operation is made profitable. 
Note that, once the stabilisation of the CO2 concentration in the atmosphere obtained in 
2060 (Figure 5) its rate of decrease is probably not an essential matter provided the 2000 
level is obtained before 2200.  

Another way to use the excess nuclear energy would be to decrease the share of 
renewable energies in the event that their intensive development would encounter 
difficulties. 

5 Conclusion  

The substitution of fossil energy by nuclear energy in the MESSAGE-efficiency scenario 
allows the end of fossil use in 2060 rather than 2100. With storage of 800 Gt of CO2, the 
original efficiency scenario still leads to a cumulated mass of CO2 injected into the 
atmosphere of 1100 Gt, while with a storage of only 275 Gt of CO2, the scenario 
MESSAGE efficiency-N limits the CO2 injected in the atmosphere to 600 Gt, compatible 
with the 1.5°C requirement. The nuclear direct primary energy needed for obtaining this 
result reaches 93 EJ in 2060 (25,600 TWh) produced thanks to a nuclear power of 3200 
GWe. Without negative consequences on the climate, it should be possible to pursue the 
nuclear development reaching a nuclear production of 600 EJ/y in 2110. This would 
allow an increase of primary energy supply (following the direct primary energy 
convention of the GEA) from 900 EJ/y in the original efficiency scenario to 1300 EJ/y in 
the efficiency-N scenario with continued nuclear production development. Table 1 
summarises the results we obtain for+ the scenario Efficiency-N and compares them to 
those of the original MESSAGE-Efficiency. 

Table 1 Summary of the energy mix and CO2 emissions for the Efficiency-N scenario in 2015, 
2060 and 2110. Two options made for nuclear production. Number in brackets 
correspond to a nuclear production constant after 2060 

 Efficiency Efficiency-N Efficiency-N Efficiency 

 2015 2060 2110 2100 

Fossil EJ  386 0 0 90 

Wind+solar EJ  0.717 96 283 283 

Hydro EJ  10 21 23 23 

Biomass EJ  42 98 221 221 

Nuclear EJ  9 173 605 (173) 0 

Primary energy EJ  
Direct GEA convention  

448 388 1132 (700) 617 

CO2/y net Gt  34 –0.5 –10.2 –14 

CO2/y stored  0 0.5 10.2 15.2 

Cumulated CO2 stored  0 8 276 801 

Cumulated CO2  
Atmosphere Gt 

34 896 627 1270 
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Notes 

1 International Institute for Applied Systems Analysis. 

2 The scenarios MESSAGE covered the period between 2005 and 2100. In this article we have 
changed the period covered from 2015 to 2110, since the evolution between 2005 and 2015 
has been marginal. 


