

Life Cycle Analysis of Carbon Dioxide Emissions from Different Energy Sources

Stefan Hirschberg Paul Scherrer Institut, Switzerland stefan.hirschberg@psi.ch

Optimizing the mitigation of carbon dioxide emissions in Europe Brussels, Belgium, October 7, 2008

SLC, Brussels, 7 October 2008

Content

- Introduction
- Why Life Cycle Assessment?
- LCA-framework
- Examples of comparative assessments of Greenhouse Gas emissions of electricity generation options
- Other environmental burdens and impacts
- Integrated perspective
- Conclusions

Comprehensive Assessment of Energy Systems at PSI Goals

- Inter-disciplinary assessment of energy technologies and scenarios for Switzerland and other countries
- Communication of results to decision-makers and stakeholders (http://gabe.web.psi.ch/energie-spiegel/)
- Support of rational and sustainable decisions ("Honest Broker")

General Approach

- Development and implementation of "state-of-the-art" methods and databases
- Focus on process-oriented Life Cycle Assessment, Risk Assessment, Environmental Impact Assessment, External Costs, Energy-Economic Modeling, Electric Sector Simulation and Multi-criteria Decision Analysis

PSI Analysis Framework

Motivation for Life Cycle Assessment

Comparison of <u>environmental burdens</u> of different (energy) <u>systems</u>

Consideration of one single stage of energy systems may not be proper

Example: "Well to wheel" comparison of two car typesa) Car with internal combustion engine, Fuel: Gasoline from oil refineryb) Car with fuel cell engine,

Fuel: compressed Hydrogen (energy carrier) from natural gas reforming

Environmental burdens (or stressors) are various, which calls for: aggregation into Categories

Life Cycle Analysis - LCA (nuclear energy chain)

SLC, Brussels, 7 October 2008

Swiss Centre For Life Cycle Inventories

LCA Database ecoinvent

- Web-based; commercial; version v2.0 available on-line since 2007: <u>www.ecoinvent.ch</u> (ecoinvent Centre, supported by Institutes of the ETH Domain)
- ~4200 processes; besides energy (nearly 1700, PSI responsible), other sectors: construction materials, metals, chemicals, transport, agriculture → background DB
- Swiss, European, and selected non-European country-specific <u>average</u> <u>conditions</u> and selected best power plant technologies
- About 1000 individual "environmental flows" accounted for:
 - pollutants to air, water & groundwater, soil
 - energy and non-energy resource uses
 - land uses

Greenhouse gas emissions, Switzerland, direct & indirect (grey)

Greenhouse gas emissions of selected energy chains

Swiss electricity systems: Greenhouse gases

Hard coal chain: GHG emissions, power plant in Europe

Source: Bauer, to be published 2008

Hard coal chain: NO_x emissions , power plant in Europe

Greenhouse Gas emissions, BWR in CH

Greenhouse Gas emissions, average BWR in CH

Greenhouse Gas emissions, PWR in CH

Greenhouse Gas emissions, average PWR in CH

Greenhouse gas emissions: specific PWR in Switzerland

How and where is the fuel enrichment done?

SLC, Brussels, 7 October 2008

Stefan Hirschberg, 21

Greenhouse Gases from the Nuclear Energy Chain

"Outliers"

ISA (2006)

- Diffusion accounts for a high proportion of total enrichment
- Complete energy chain relies largely on hard coal as the primary fuel source
- Maximum value: Uses a very low uranium concentration in the mined uranium ore

Storm van Leeuwen & Smith (2005)

Much criticism from other experts and the criticism is supported by our own research:

- Methodology & assumptions are questionable and partly not transparent
- Used a lot of very old references
- Energy use in the nuclear cycle is systematically overestimated
 - \rightarrow exaggerated CO₂-emissions
- Current practice of uranium mining is not analysed correctly, especially for low concentrations in uranium ore for Switzerland and W.Europe it is not relevant.
- Detailed research must be conducted of low concentration uranium ore mining, taking technological developments into consideration

GHG-emissions: Natural Gas Combined Cycle in Italy

Total 446 g(CO₂ eq) / kWh

GHG-emissions: Photovoltaic multi-crystalline Silicon in Switzerland

Total 62 g(CO₂ eq) / kWh

Greenhouse gas emissions, electricity mix

Source: ecoinvent, Mirror on Energy No.11

GHG emissions, US & European electricity production mixes

Laboratory for Energy Systems Analysis Technology Assessment

Composition of European electricity mixes (2004)

Electricity Systems in UCTE (2000) Life Cycle Impact Assessment LCIA (example)

The aim of LCIA is at simplifying the understanding of the results of the inventory phase (according to ISO 14040 and 14042), by using one single indicator.

Ecoindicator '99 is a damage oriented LCIA method.

Impact potentials of environmental flows are estimated using factors; The impacts are weighted and assigned to the damage categories:

- Human health
- Ecological quality
- Resources

The weighting of the impact categories is made from 3 cultural perspectives:

<u>Hierarchic</u>: includes environmental damages that are proved.

- Egalitarian: considers any effects, even with minimal scientific proof, and takes future generations into account.
- Individualist: focuses on the present, only for effects that are proven, and neglects long-term effects.

Stefan Hirschberg, 31

SLC, Brussels, 7 October 2008

Swiss electricity systems (2030): Eco-indicator 99 (H,A)

Eco-Indicator 99 (H,A): US vs. European electricity mixes

External costs, new power plants, 2000 (air pollution)

External costs, 2030 (air pollution)

Total costs of current and future electricity supply systems

SLC, Brussels, 7 October 2008

Overview of Criteria and Indicators for Comparative Sustainability Assessment of Energy Systems

Sustainability Area	Impact Area	
Economy	Financial Requirements]
	Resources	
Environment	Global Warming]
	Regional Environmental Impact	
	Non-Pollutant Effects	
	Severe Accidents	
	Total Waste	
Social	Employment	
	Proliferation	
	Human Health Impacts (normal operation)	
	Local Disturbances	
	Critical Waste Confinement	
	Risk Aversion	Source: Hirschberg et al., 200

Multi-criteria Decision Analysis (MCDA), Current Systems, Germany

Favouring social criteria

Source: Hirschberg et al., 2004, Current systems, Germany

Kaya Equation Implications

Kaya Equation Implications

Concluding remarks

- LCA with LCI as its basis is a fundamental tool for balanced and comprehensive systems comparison, and for a wide variety of environmental studies.
- Detailed and transparent studies demonstrate that most renewables and nuclear have very low total GHG-emissions
- Both renewables & nuclear are needed to meet future demand & respond to the climate change challenge.
- None of the technological options can fulfill all criteria concerning sustainability and market requirements.
- Trade-offs between environmental, economic and social sustainability components are inevitable and are influenced by value judgements.