CONGRES DE LA SFP

Table of contents

- 1. What future for hydrocarbons with the incoming peaks of oil and gas ?
- **2.** Impact of global warming on the world energy mix
- **3.** What about future oil prices ?
- 4. Which energy sources will power transport in the 21st century ?
- **5.** Renewable energies vs nuclear energy

(1)

What future for hydrocarbons with the incoming peaks of oil and gas ?

GDP and demand for oil Annual growth rate (%, worldwide)

Oil growth is coming from outside the OECD exclusively

Source: AIE

2000 – 2005 : a historical warning by ASPO Wake up!!! We are here **ASPO France members** A few 'peak oil' websites (June 2006): Jean Laherrère (formerly Total) 3w.peakoil.net **Pierre-René Bauquis (fy Total)** 3w.aspofrance.org **Carlos Cramez (fy Total)** 3w.oilcrisis.com **Jean-Luc Wingert** 3w.peakoil.com Jean-Marc Jancovici (fy Envt) Alain Perrodon (fy Elf) Paul Alba (fy Elf) Maurice Allègre (fy IFP) **Jacques Varet (BRGM)** Adolphe Nicolas (Montpellier Uni) Peak Oil Jean-Marie Bourdaire (ex Total) **Bernard Rogeaux (EDF)**

www.oilcrisis.com

Oil reserves are concentrated in the Middle East

Brief summary of past findings and views on peak oil

- The only "publically available data" on oil reserves are the so called "proven reserves".
- Unfortunately, they are totally useless to study and predict "Peak Oil".
- The only "usable" concepts for "peak oil estimation", at oil basins levels, countries levels or world level are :
 - Evolution of past exploration performances and production curves
 - Creaming curves
 - King Hubbert methodology.
 - Ultimate reserves concept

Oil and condensate discoveries and worldwide production of liquid hydrocarbons

Gboe/year (5-year average)

(*) 4-year average

10

Gas-hydrocarbon discoveries and production worldwide

Gboe/uear (5-year average)

(*) 4-year average

Conclusions about "peak oil" - 1

- Since June 2006 it can be considered that views about Peak Oil in France have become reasonnably similar :
 - TOTAL : Thierry Desmarest around 2020 / around 100 Mb/d
 - ASPO France : J. Laherrère around 2015 / less than 100 Mb/d
 - P.R. Bauquis around 2020 / around 100 Mb/d
 - IFP : Y. Mathieu –ondulated plateau 20150/2030 less than 100 Mb/d
- This point of view is widely different from those among the "optimists" who believe that Peak Oil is not "reserves related" but a political problem : insufficient investments and restrictive policies about investments by OPEC countries, Russia and Mexico :
 - Exxon Mobil June 2006 "no sign of peak oil"
 - Aramco June 2006 "no reserve problem"
 - ENI (Maugeri Early 2006 "no foreseeable oil peak"
 - BP : John Browne May 2006 "There is no reserves problem"
 - Mike Lynch (ex MIT) "similar and above 120 Mb/d
 - USGS, DOE, EIA, IEA...

conclusions about peak oil -2

- The oil production peak (between 2015 and 2025, most probably) and gas production peak (between 2020 and 2040) will trigger radical changes in the oil and gas industries.
- After the oil peak, oil and gas prices will see a change of logic: they will become related to those of their substitutes (reversal from the past).
- As soon as world oil production starts declining, OPEC will lose its price-policing role but could keep other roles.
- Long term oil "stabilized price" after world peak could be around 100\$/bbl real terms (year 2000 US\$) and gas CIF border prices (US, UE, Japan) at 15\$/MM BTU.

Conclusions about peak oil - ③

- Oil and gas will still be produced beyond the end of the 21st century.
- Paradoxically, it will be the oil and gas industry's golden age (high prices, little political interference in those prices).
- It will be a golden age for oil companies and for the service companies and contractors.
- A progressive "marriage" between the oil industry and the nuclear industry will develop all along the 21st century and they will become more and more complementary.
- If I had children going to university, I would advise them to consider careers in the oil and gas industries or in the nuclear industry.

Impact of global warming on the world energy mix

Anthropic emissions of carbon dioxyde

Atmospheric contributions to greenhouse effect

Projections are heavily scenario-dependant

The price impact of OPEC surplus production capacity

Long-term WTI barrels (NYMEX): 6-year futures market, New York

OIL Prices 2005 – 2050 (Arabian Light in US \$ 2000/bbl)

A dream view presented in Cambridge by P.R. B on 15/03/06

US\$/bbl

Automobiles of the past and present: a few key dates

Nearly every automotive technology destined for use on cars of the future has a long history

LIQUID HYDROCARBONS: UNMATCHED ENERGY COMPACTNESS

World production and share consumed by transport

Which energy sources will power transport? 1960 - 2000 - 2100

Energies for Road transports and Carbon Emissions

1960 - 2000 - 2100

Hydrogen : a potential challenger for aviation ?

Gaz naturel comprimé : réservoir acier ou composite

Summary conclusions of Part 4

Oil peak and gas peak :

How will it influence energy uses for transportation

and how will it trigger a "marriage" between

oil industry and nuclear industry

2000 ; Energy for Ground Transportation
2000 ; Energy for Ground Transportation
2100 : Energy for ground Transportation
2100 : Energy for ground Transportation
30% oil and gas 60% nuclear 10% others

Potential of renewable energies versus nuclear energy :

Different views and options among European countries.

A typical example : France versus Germany

wind power vs nuclear power

WIND

- no CO2 emission
- max 10 MW installed per km2
- 0.01 TWh / km2
- not available on call
- unit investment small
- equipment life 20 years
- free fuel
- 10 to 20% max in electrical mix

NUCLEAR

- no CO2 emission
- 1000 to 1500 MW per km2
- 10 TWh / km2
- base load
- unit investment large
- equipment life 40 years
- fuel cost
- security and waste problems

wind power vs nuclear power

GERMANY

- 18 nuclear units
- phasing out nuclear plants
- total elec capa installed 120 GW
- wind capa installed 18 GW
- nuke capa installed 21 GW
- total elec prod 600 TWh/yr
- wind prod 19 TWh/yr
- nuke prod 165 TWh/yr
- wind % of total elec 3 %
- nuke % of total elec 28 %

FRANCE

- 58 nuclear units
- replacing old plants with EPR
- total elec capa installed 112 GW
- wind capa installed \leq 1 GW
- nuke capa installed 63 GW
- total elec prod 567 TWh/yr
- wind prod \leq 1 TWh/yr
- nuke prod 441 TWh/yr
- wind % of total elec \leq 0.1 %
- nuke % of total elec 78 %

For more detailed data, please consult our on-line data service at http://data.iea.org.

For more detailed data, please consult our on-line data service at http://data.iea.org.

Grenoble

GWh

Thank you for your attention