

STOCKAGE GEOLOGIQUE DU CO₂ Enjeux et défis

Pascale Bénézeth

Géosciences Environnement Toulouse (GET) Toulouse, France

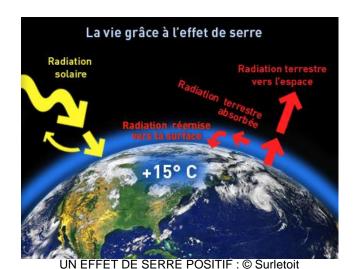
STOCKAGE GEOLOGIQUE DU CO₂ POURQUOI-COMMENT?

✓ GAZ A EFFET DE SERRE (GES)

GES: LES EMISSIONS DE CO₂

✓ LES IMPACTS - CONSEQUENCES

LES OBJECTIFS ET SOLUTIONS


✓ LA CAPTURE ET SEQUESTRATION GEOLOGIQUE DU CO₂

LES GAZ A EFFET DE SERRE (GES)

Les principaux gaz à effet de serre qui existent <u>naturellement</u> (vitaux) dans l'atmosphère sont :

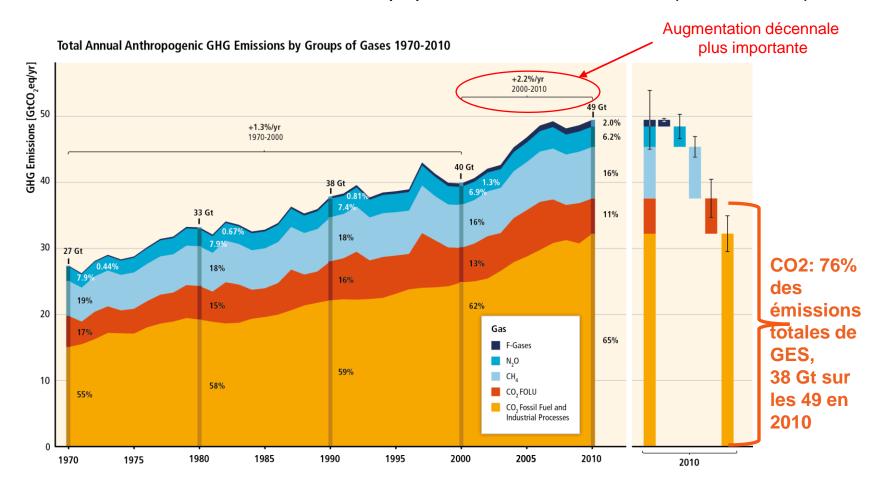
- Vapeur d'eau (H₂O)
 - Évaporation / transpiration
 - Volcans
- Dioxyde de carbone (CO₂)
 - Respiration (humains/animaux)
 - Décomposition (plantes/arbres)
 - Volcans

- Méthane (CH₄)
 - Terres humides
 - Processus digestifs des animaux
- Ozone (O₃)
 - Existe à l'état naturel dans la haute atmosphère
 - Essentiel pour la vie
- Oxyde nitreux (NOx)
 - Des sols et de l'océan

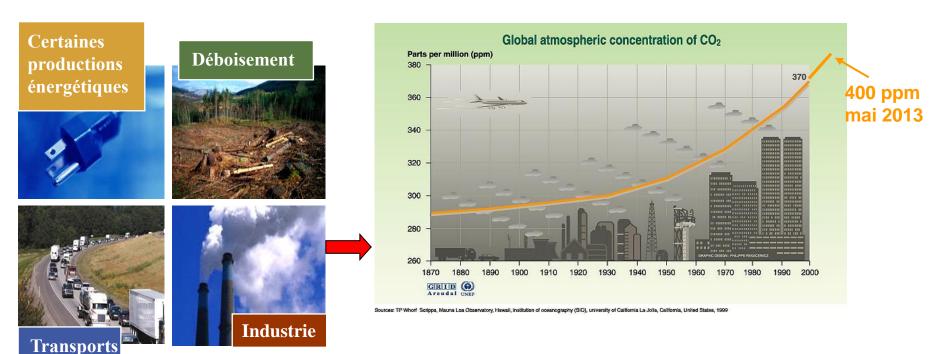
La température de notre planète dépend de l'équilibre entre le rayonnement solaire absorbé et le rayonnement infrarouge émis. Cet équilibre entre ces deux rayonnement permet de conserver une température globalement constante sur notre planète.

Si on rajoute dans l'atmosphère des gaz absorbant le rayonnement infrarouge, il en résulte par simple équilibre énergétique, un réchauffement de l'atmosphère. C'est ce que l'on appelle le forçage radiatif.

LES GAZ A EFFET DE SERRE (GES)


Les principaux gaz à effet de serre d'origine anthropiques:

- Vapeur d'eau (H₂O)
 - Évaporation
 - Volcans
- Dioxyde de carbone (CO₂)
 - Combustion des énergies fossiles
 - Transports
 - Déforestation...
 - Ozone (O_3)
 - Pollution atmosphérique à la surface

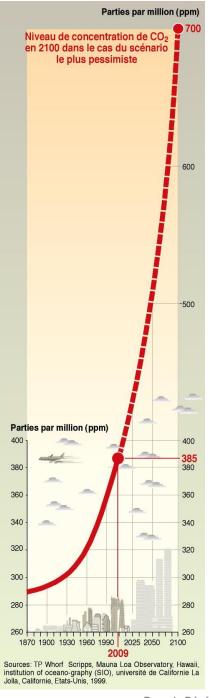

- Oxyde nitreux (NOx)
 - Sols et océans
- Méthane (CH₄)
 - Ruminants
 - Rizières,
 - lieux d'enfouissement,
 - traitement des déchets
- Halo carbures
 - Produits chimiques anthropiques
 - HFC, PFC, SF₆, CFC

Émissions de gaz à effet de serre d'origine anthropique à l'échelle mondiale (IPCC, 2014)

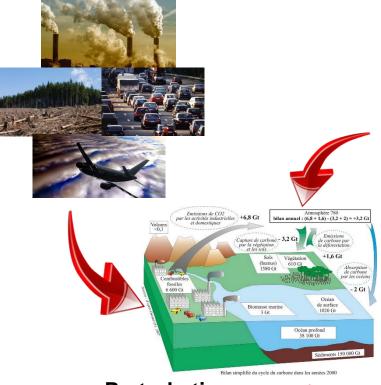
Entre 1970 et 2010 et 2000-2010: Les rejets annuels de CO₂ ont contribué à ~76% des émissions totales de GES

GES: LES EMISSIONS DE CO₂

les activités humaines ont conduit à une hausse exceptionnelle de la concentration des gaz à effet de serre avec une valeur record relevée en mai 2013 de 400 ppm pour le CO₂.


Les impacts - conséquences

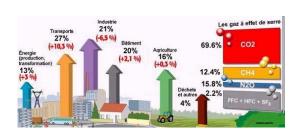
Ce constat a été confirmé et affiné par le GIEC dans son 5ième rapport (volume 3) publié en 2014 en précisant notamment que :


- Les scénarios de référence (scénarios sans efforts supplémentaires explicites visant à restreindre les émissions) dépassent les 450 ppm CO₂ d'ici à 2030 et atteignent des niveaux de concentration en CO2 situés entre 750 et plus de 1300 ppm CO2 d'ici à 2100.
- Le réchauffement est dû à l'activité humaine avec au moins <u>90%</u> de certitude,
 - Le réchauffement moyen constaté à la surface de la terre au cours du siècle écoulé s'élève à <u>0,85°C</u>,
 - Le rythme d'accroissement actuel des concentrations de GES provoquera un réchauffement moyen de 0,2° par décennie durant les trente prochaines années.

- <u>les températures pourraient augmenter, d'ici 2100, d'environ</u>
3,7°C à 4,8 °C (comparées aux niveaux préindustriels), suivant
les différents scénarios

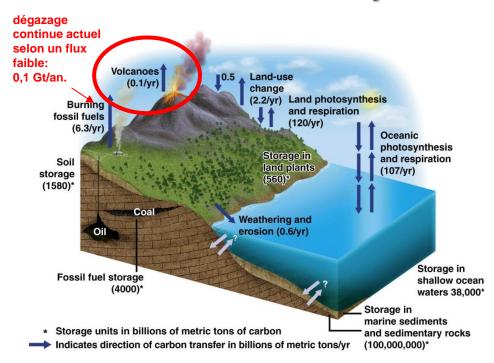
LES IMPACTS - CONSEQUENCES

Perturbations des échanges naturels



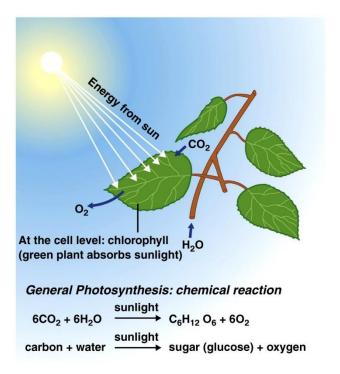
Changement climatique

Changement de la composition de l'atmosphère



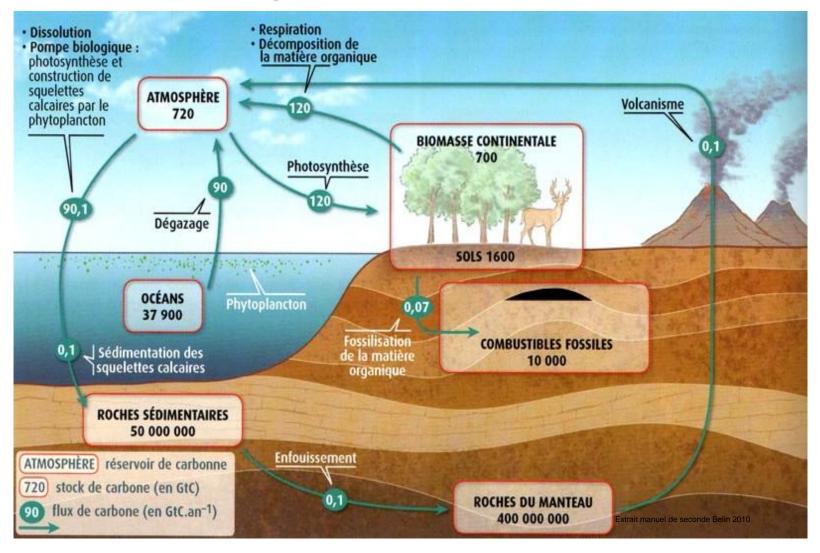
Effet de serre

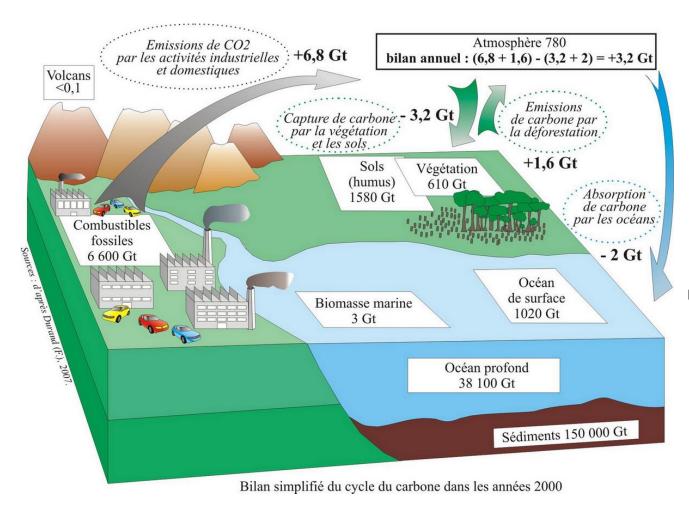
Impacts - conséquences


Cycle du Carbone

Le cycle du carbone débute par l'arrivée du CO₂ à la surface de la Terre

→ dégazage du manteau terrestre lors des **éruptions volcaniques** qui rejettent dans l'atmosphère du CO₂ (et autres gaz comme le monoxyde de carbone, CO).


Les volcans ont joué un grand rôle en mettant fin à la glaciation "boule de neige". C'est grâce à des cataclysmes volcaniques que notre planète a pu sortir de son état de sphère gelée.


Au cours des âges la plupart de ce CO₂ originel a été peu à peu **piégée**, surtout par des processus écologiques, dans des « réservoirs » de carbone.

La présence du CO₂ fut à l'origine de l'explosion de la vie en permettant de ramener la température de la Terre dans une plage idéale (15°C de moyenne) où les organismes vivants peuvent se développer.

Cycle du Carbone naturel

Cycle modifié du carbone

- © Cet effet "pompe à carbone" contribue fortement à réduire la quantité de CO₂ de l'atmosphère (¼ des émissions totale).
- Mais cette capacité semble se dégrader en raison des effets combinés du réchauffement et de l'acidification qui affectent la production et la fixation de carbonates marins, perturbe et dégrade certains écosystèmes...

Le total des émissions de CO₂ dans l'atmosphère est d'~32 Gt de CO₂ (8 GtC/an) et la Terre absorbe ~ 20 Gt de CO₂ (5 GtC/an)

Impacts - conséquences

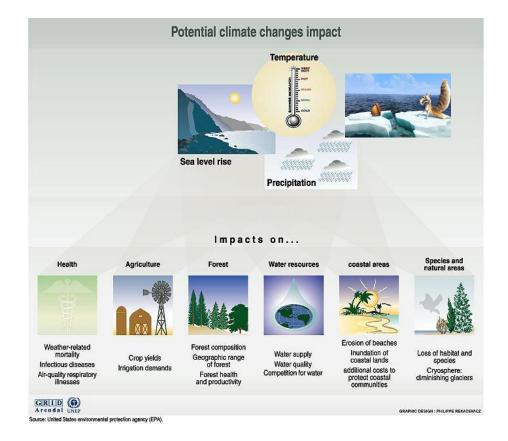
Zones arctiques en Sibérie: des régions où l'impact humain était nul jusqu'ici sont touchées (cf Oleg Pokrovsky, GET)

Au cours des cinquante dernières années, la température moyenne des zones arctiques a augmenté de 2°C

Le permafrost (sous-sol gelé depuis des milliers d'années~40 000 ans pour certains dans les zones arctiques) libère en fondant:

- de la matière végétale et donc du carbone
- des minéraux
- méthane (stocké dans la glace).

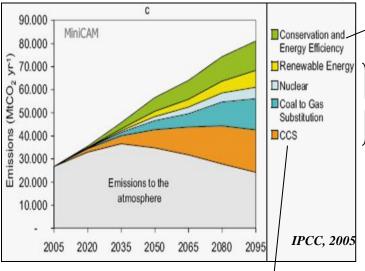
toute la chimie des sols en milieu arctique s'en trouve modifiée


modification de la composition chimique des grands fleuves de ces régions.

L'empreinte du réchauffement des sols arctiques atteindra donc l'Océan Arctique, et affectera l'ensemble des océans de la Terre.

On estime que le permafrost contient 950 GtC > contenu actuel en CO_2 de l'atmosphère (800 GtC).

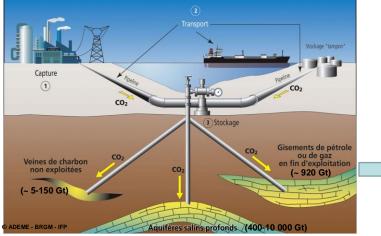
Impacts - conséquences



- -des phénomènes climatiques aggravés : tempêtes, inondations, sécheresses,
- -un bouleversement de nombreux écosystèmes et sur la transmission des maladies animales,
- -des crises liées aux ressources alimentaires: sources de conflits et de migrations,
- -des déplacements de population : augmentation du niveau de la mer (18 à 59 cm d'ici 2100) devrait provoquer l'inondation de certaines zones côtières et causer la disparition de pays entiers (Maldives, Tuvalu), provoquant d'importantes migrations,

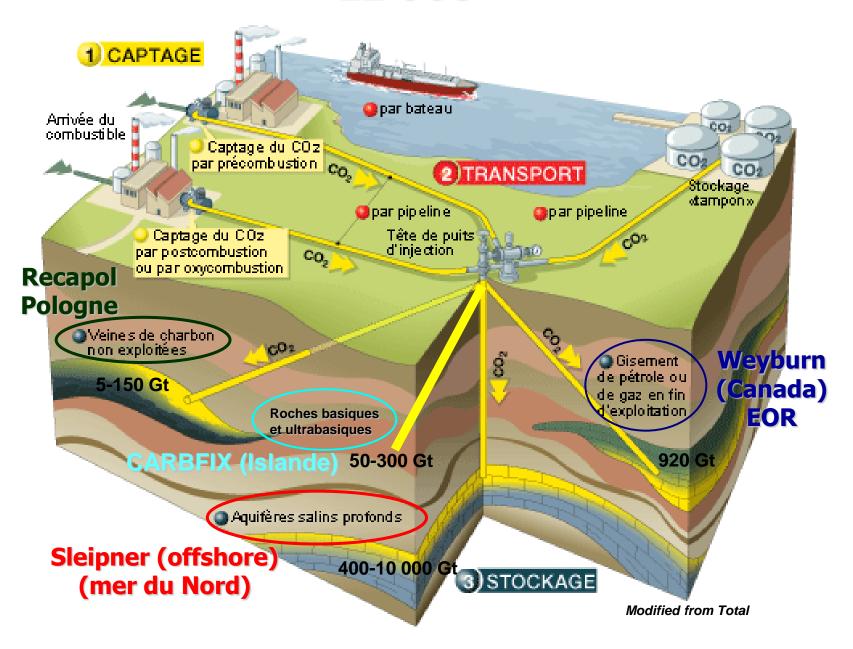
- etc...

Les objectifs et solutions



CO2 CO2 CO2 Coal-fired power plants

Alternatives


Carbon Capture Storage

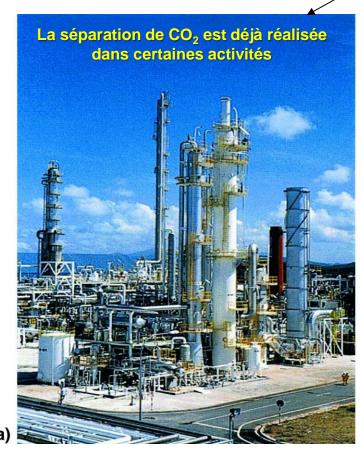
Selon le GIEC, le CCS permettrait une réduction de CO₂ d'environ 33% d'ici 2050 sous réserve que les technologies nécessaires soient développées et validées.

LA CAPTURE ET LA SEQUESTRATION GEOLOGIQUE DU CO₂

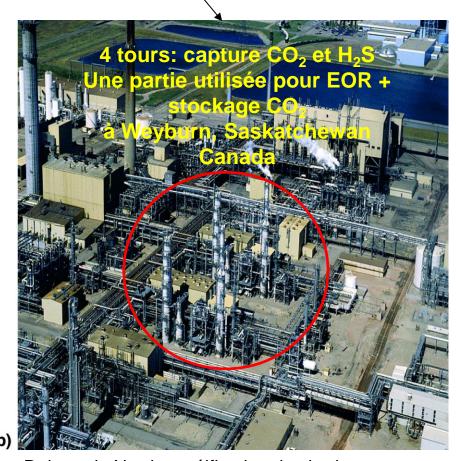
LE CCS

1. Captage: 1ère étape de la filière

Selon le type d'installation, le captage de CO₂ consiste à récupérer le CO₂ émis par les industries avant, pendant ou après la combustion des matières premières (pétrole, gaz ou charbon) et donc par 3 principales voies technologiques différentes:



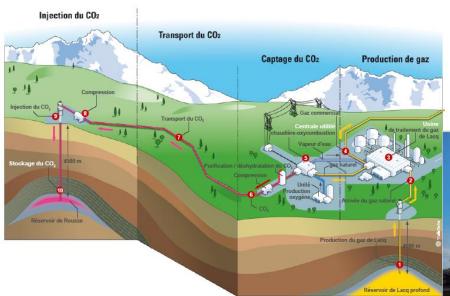
<u>C'est de loin la plus coûteuse (environ 2/3 du coût global).</u> Elle est pourtant nécessaire pour au moins deux raisons :


- les fumées de combustion contiennent en moyenne entre 3 et 15 % de CO₂. Séparer le CO₂ permet de réduire les quantités à comprimer et à transporter, et donc les coûts ;
- les sites géologiques adaptés au stockage de CO₂ nécessitent un certain nombre de caractéristiques et sont donc limités ; stocker uniquement le CO₂ permet d'optimiser les capacités de stockage existantes.

LE CCS: captage

Real examples of a post combustion and a pre combustion facility

Malaisie, production d'Urée 200t CO2/jour



Dakota du Nord, gazéification du charbon 3.3Mt CO2/an SRCCS Figure TS-4

Exemple de projet / site pilote en oxy-combustion

Total a utilisé la technologie de captage du CO₂ par oxycombustion.

En France, un démonstrateur intégré avec le projet de captage et stockage du CO₂ de Total dans un ancien gisement de gaz naturel situé dans la région de Lacq (PA)

L'une des 5 chaudières existantes a été convertie en chaudière à oxycombustion à laquelle a contribué Air Liquide. Le CO₂ ainsi récupéré, concentré à plus de 90%, est compressé avant d'être transporté par pipeline à 27 km de là, vers le site de Rousse à Jurançon, tout proche de Pau, où il a été enfoui dans un ancien puits d'extraction de gaz de Lacq. Le pipeline utilisé est celui-là même qui a servi dans l'autre sens, pendant 30 ans, à acheminer le gaz extrait à Rousse vers l'usine de Lacq.

Cout total du projet : 60 million d'€

Exemple de projet / site pilote en post-combustion

Une première tonne de CO₂ a été captée le 11 juillet 2013 par le démonstrateur de recherche installé sur l'unité 4 de la centrale thermique EDF du Havre. La technologie choisie est en post-combustion : le CO₂ est extrait des fumées résultant de la combustion du charbon grâce à des amines.

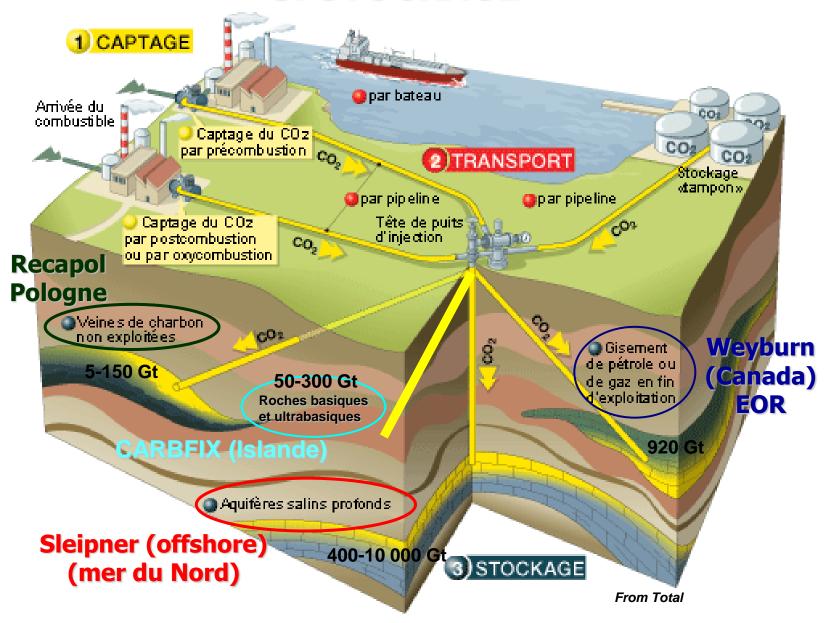
Au final, ce prototype de recherche devrait capter environ 1 tCO₂ /h.

22 M€, financé à 25% par l'ADEME.

2. TRANSPORT

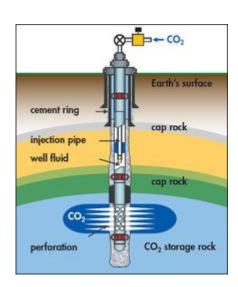
Après son captage, le CO₂ doit être déshydraté et comprimé afin d'améliorer l'efficacité du transport et du stockage.

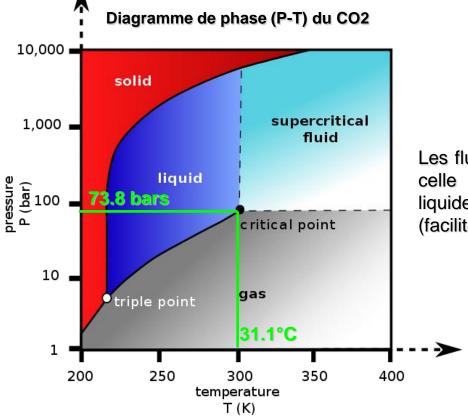
Compte tenu des volumes à véhiculer et des conditions du transport (sous haute pression), 2 modes sont utilisés:


<u>le bateau</u>: Des navires, proches de ceux transportant le gaz de pétrole liquéfié (GPL), peuvent être utilisés pour les longues distances. Le CO₂ y est transporté en phase liquide à pression modérée et basse température (environ 20 bar et -20 °C).

Le gazoduc ou "carboduc": le plus utilisé car le retour d'expérience est important: plus de trente ans que les industriels américains charrient plus de 40 Mt CO₂ par an via 2500 km de canalisations terrestres.

Le coût de transport du CO₂ par canalisation: varie entre 0,5 et 10 €/t/100 km.


3. STOCKAGE

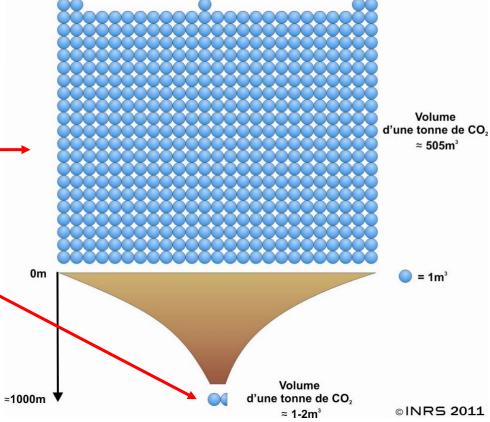


LE CCS: stockage

Le CO₂ est injecté dans le substrat géologique rocheux sous forme supercritique, via des puits d'injection, dans des roches perméables jugées suffisamment hermétiques.

Les fluides supercritiques ont une viscosité proche de celle des gaz, une densité proche de celle des liquides, et une diffusivité élevée / fluides liquides (facilite pénétration dans milieux poreux).

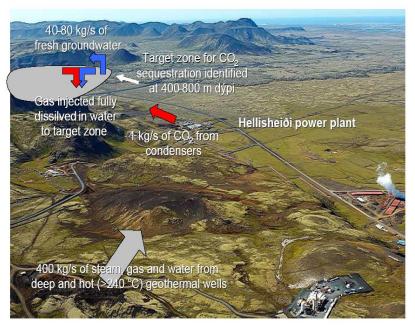
LE CCS: stockage

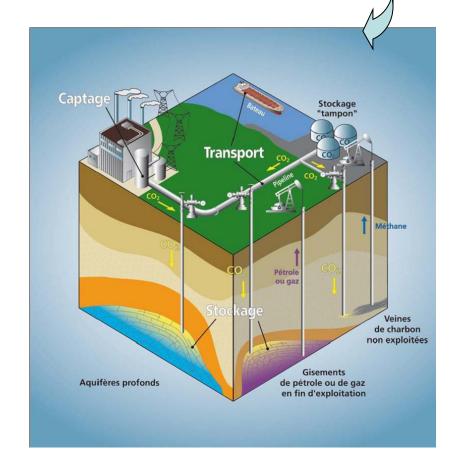


Que représente une tonne de CO₂ ?

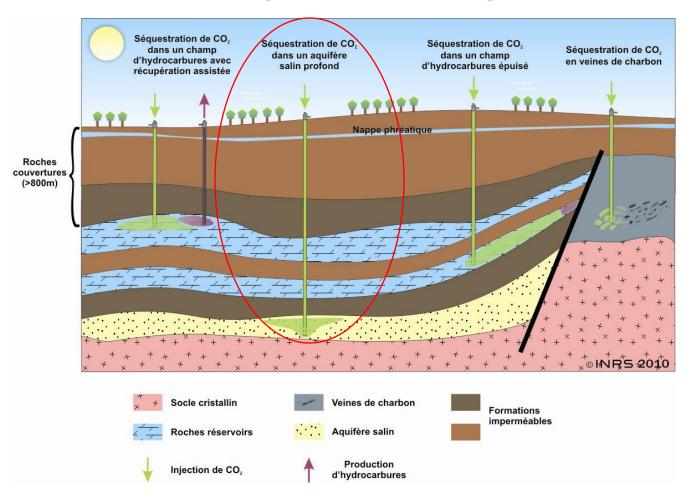
À température et pression ambiante, une tonne de CO₂ occupe environ un volume de 505 m³. (cube ~8 m de côté)

Une fois séquestrée dans un réservoir géologique à 1000 mètres de profondeur, 1tCO₂ pur à l'état supercritique occupe un volume de 1 à 2 m³, (250 à 350 fois moins d'espace qu'à la surface de la Terre).

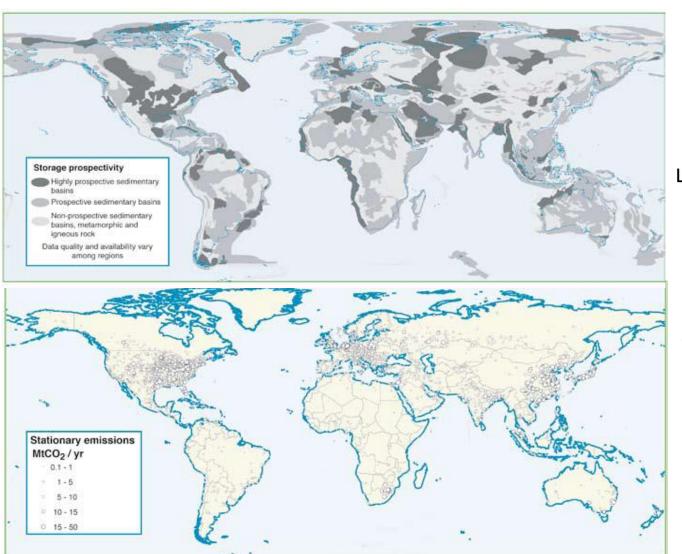

Il est donc possible de séquestrer de grandes quantités de CO_2 dans un plus petit volume, ce qui représente un avantage majeur de la séquestration géologique du CO_2 .


Options de stockage géologique:

- Les aquifères salins profonds (~400-10 000 Gt),
- Les gisements de pétrole ou de gaz en fin d'exploitation (~920 Gt), ou déplétés
- Les veines de charbon non exploitées (~5-150 Gt)
- Les basaltes



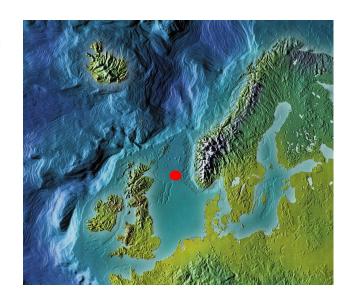
Site pilote Islandais-CARBFIX


I - Les aquifères salins profonds

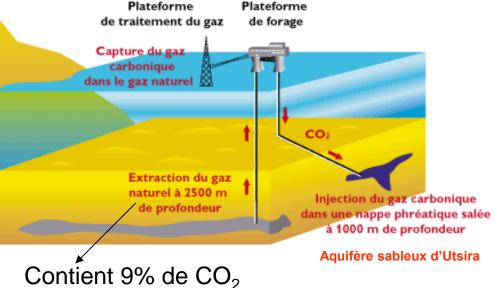
Formations géologiques perméables qui contiennent de l'eau salée (impropre à la consommation), et qui abritent parfois des gisements de pétrole et de gaz mais aussi des gisements de CO₂ pur, d'origine naturelle. D'où l'idée de stocker du CO₂ dans les pores des roches pour imiter ces gisements naturels de CO₂.

LE CCS: stockage aquifère Salins

Ces réservoirs sont très bien répartis à la surface du globe ce qui offre la possibilité de développer ces systèmes à proximité des sources d'émission.

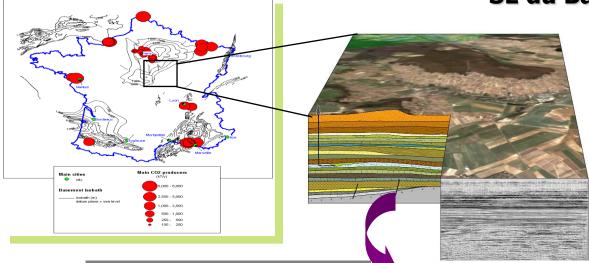

Les capacités mondiales de stockage de CO₂ dans ces aquifères profonds seraient de **400 à 10 000 Gt**

plusieurs milliers d'années d'émissions de CO₂).


SLEIPNER, Norvège (Mer du Nord)

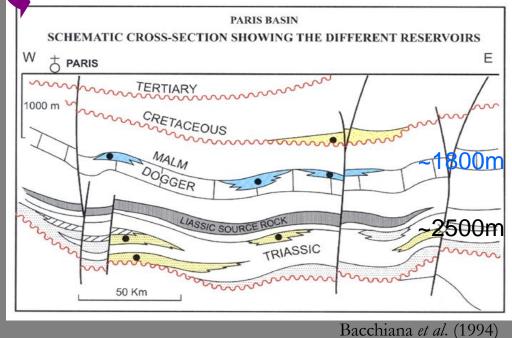
Depuis octobre 1996, 1MtCO₂/an injecté dans un aquifère profond à 1000m sous le plancher océanique à partir de la plate-forme offshore de gaz naturel de Sleipner (Norvège).

Ce projet est économiquement viable pour les industriels car les taxes norvégiennes imposées sur les émissions de CO₂ (50€/t) sont plus élevées que le coût de l'enfouissement.



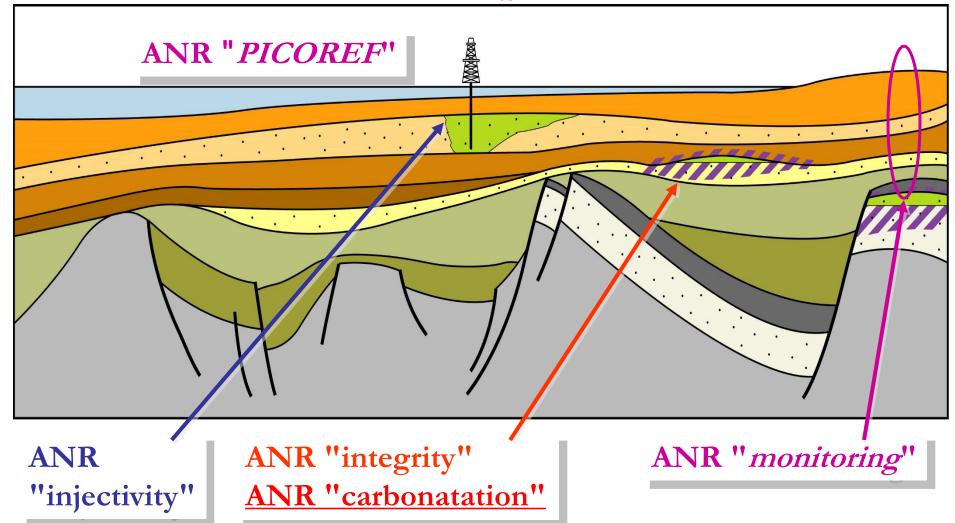
LE CCS: stockage-aquifères salins profonds

SE du Bassin Parisien

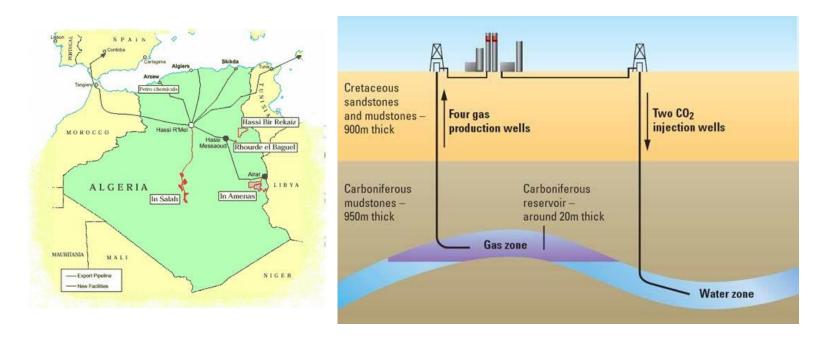


Deep saline aquifers

Dogger limestones (calcaires) ca. 4 Gt CO₂


Chaunoy sandstones Donnemarie sdst. (sables, grès)

ca. 21 Gt CO₂



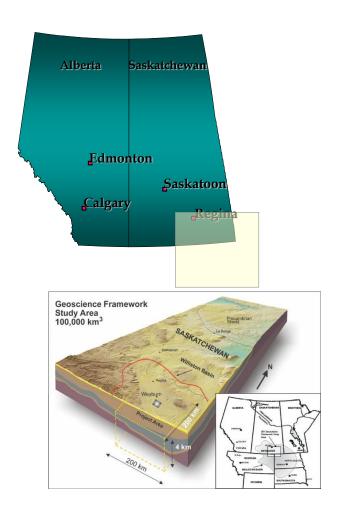
PROJETS ANR EN 2005

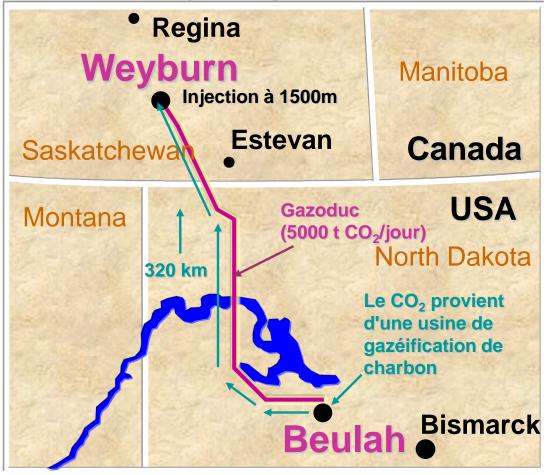
A cluster of projects

Projet IN SALAH, Algérie

Le projet industriel CSC In Salah est opérationnel en Algérie depuis 2004. Plus de trois millions de tonnes de CO₂, séparés pendant la production de gaz, ont été séquestrées dans des formations salines profondes.

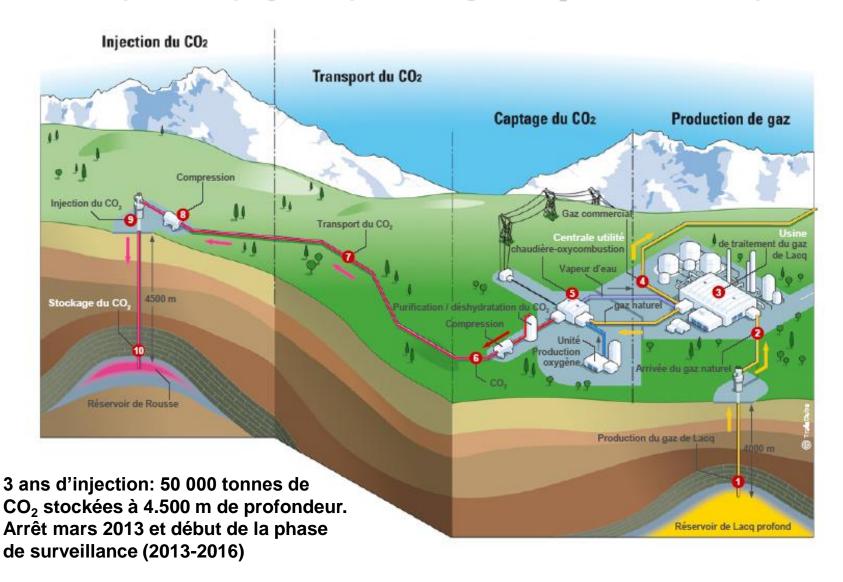
BP, Sonatrach et Statoil, les opérateurs du projet, ont pour objectif de séquestrer un total de 17 Mt au cours des 20 prochaines années.


II - Les gisements de pétrole ou de gaz en fin d'exploitation


L'injection de CO₂ dans des gisements pétroliers est déjà pratiquée depuis des décennies (surtout au Texas), à des fins de récupération assistée: CO2-EOR (Enhanced Oil Recovery).

Ces réservoirs présentent de nombreux avantages: connaissance géologique « parfaite » du site, faibles coûts d'exploration, réutilisation du matériel d'extraction pour l'injection du CO₂, augmentation de la production des gisements due à l'injection de CO₂ (récupération assistée, susceptible d'augmenter de 15% la production d'un gisement)... Les capacités mondiales de stockage seraient de 125 Gt de CO₂ pour les gisements de pétrole et de 800 Gt pour les gisements de gaz.

LE CCS: stockage-gisements de pétrole ou de gaz

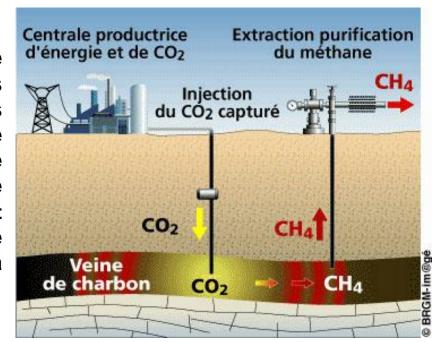


Exemple: Weyburn-Midale

Ce projet, mis en place en septembre 2000, permet actuellement de stocker 1,8 million de tonne par an de CO₂. C'est un programme de séquestration du CO₂ dans les champs pétroliers combiné à la récupération assistée de pétrole (CO₂-EOR), ce qui réduit les coûts de stockage.

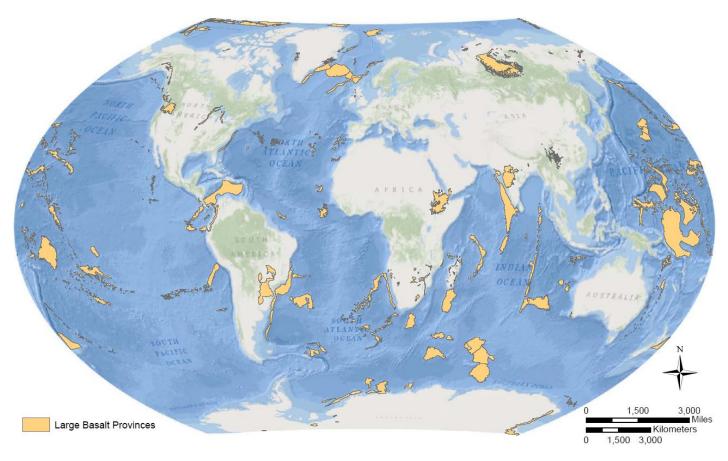
De janvier 2010 à mars 2013, Total a testé à Lacq la première chaîne complète de captage-transport-stockage de CO₂ industriel en Europe.

LE CCS: stockage


III- Les veines de charbon non exploitées

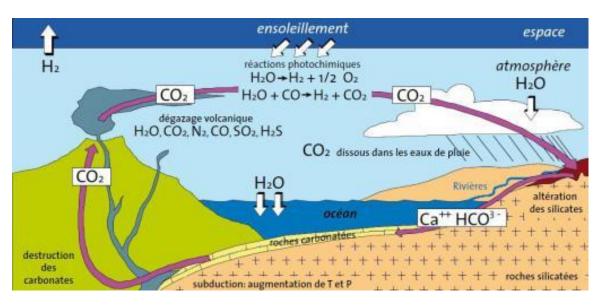
Le CO₂ est piégé dans ces mines par adsorption sur le charbon. Cette technique offre un double avantage car elle permet d'augmenter la production de méthane (récupération assistée du méthane CO2-ECBMR).

En effet, le charbon a plus d'affinité pour le CO₂ :


pour 1 molécule de CO₂ adsorbée, 2 molécules de CH₄ sont relâchées

Mais les quantités de CO₂ pouvant être stockées dans ces réservoirs restes faibles par rapport aux deux autres techniques. La capacité mondiale de stockage de CO₂ dans les mines de charbon non exploitables serait de l'ordre de 150 milliards de tonnes mais elle n'est pas encore garantie. Des travaux de recherche sont en cours pour préciser la faisabilité de l'injection.

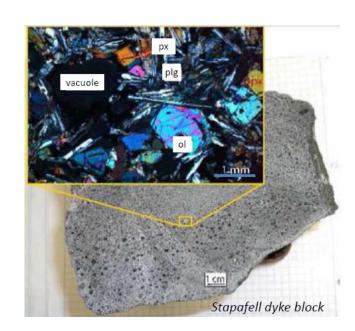
IV- Les basaltes


Global Distribution of Large Basalt Provinces

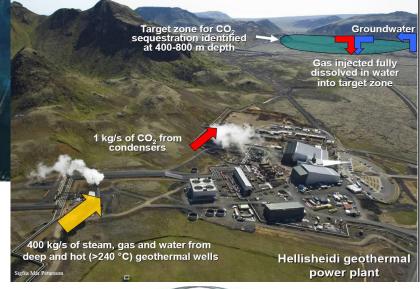
De gigantesques formations de roches basiques (et ultrabasiques) existent en de nombreux endroits.

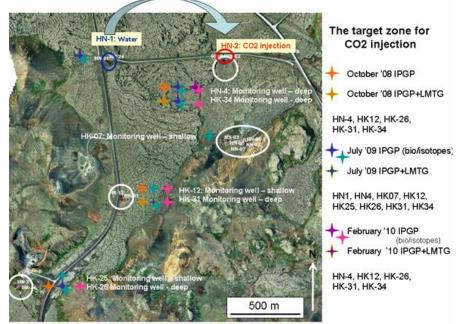
LE CCS: stockage: basaltes

rôle majeur dans le cycle du carbone, en réagissant notamment avec le CO₂ atmosphérique pour former des carbonates.

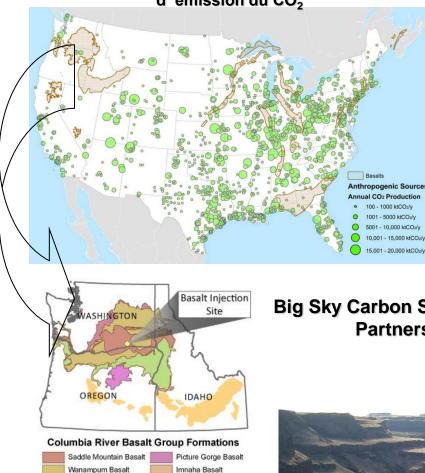

Fort potentiel de séquestration minérale dans les réservoirs (ultra)mafiques

$$(Mg, Ca, Fe)_x Si_y O_{x+2y} + xCO_2 \rightarrow x(Mg, Ca, Fe)CO_3 + ySiO_2$$


Riches en silicates de Mg, Ca et Fe (olivine, pyroxène, plagioclase)

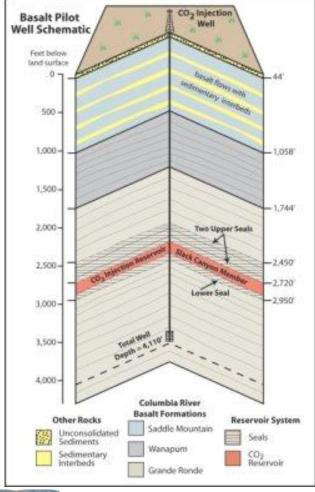

LE CCS: stockage: basaltes

Projet CARBFIX, Islande Projet ANR-CO2FIX



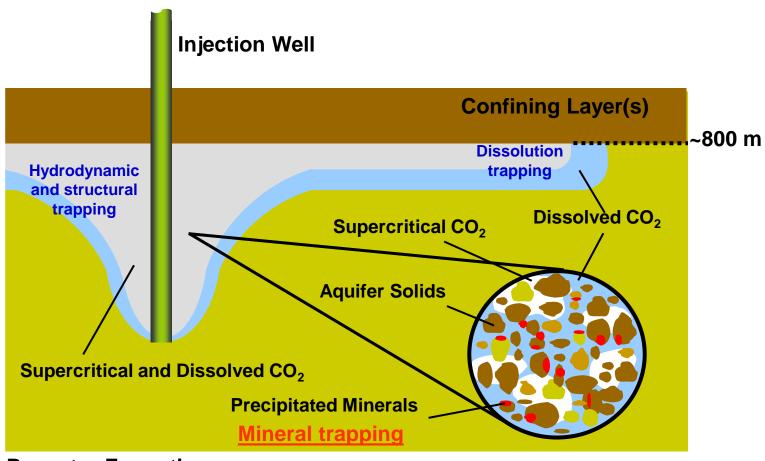
LE CCS: stockage: basaltes

Big Sky-Wallula project

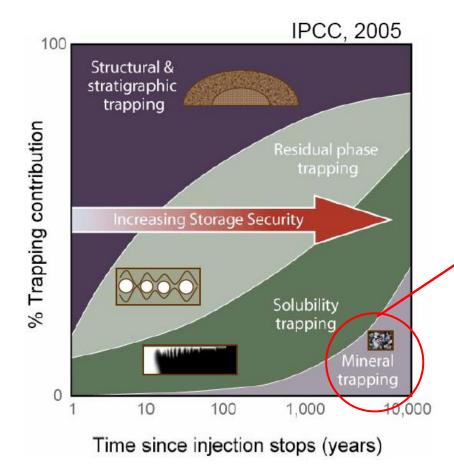

Distribution des formations basaltiques principales aux USA comparée à la distributions des sources d'émission du CO2

Injection de 1000t CO2 et suivi sur 14 mois $(\sim 12 M\$)$

Grande Ronde Basalt


Big Sky Carbon Sequestration Partnership

1,000 meters below the ground surface. The project will utilize 6 preexisting monitoring wells within 100 meters of the injection site to provide detailed information about the vertical migration of the carbon dioxide plume.(McGrail, PNNL)

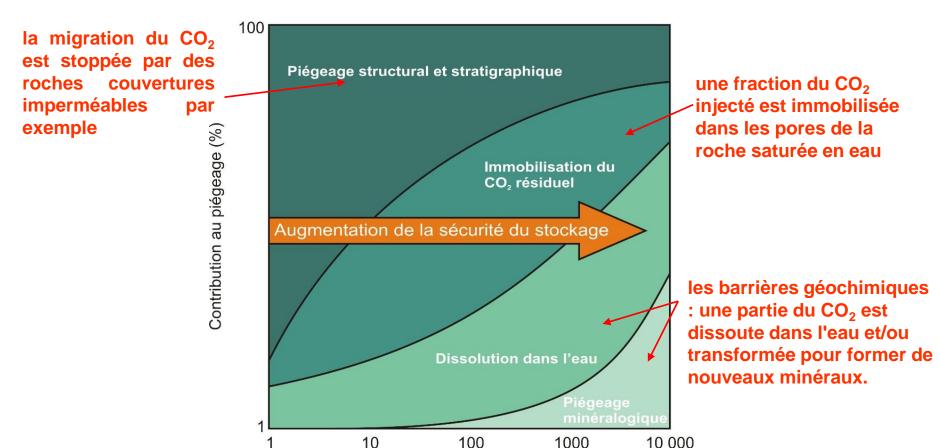

Other Basalt Provinces

INJECTION DU CO₂ ET LES MECANISMES DE PIEGEAGE: que devient le CO₂ injecté?

Receptor Formation

Evolution des mécanismes de piégeage avec le temps

Calcite: CaCO₃ Dolomite: CaMg(CO₃)₂


Magnesite: MgCO₃ Siderite: FeCO₃

Dawsonite: NaAICO₃(OH)₂

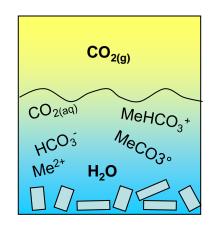
Think just how much carbon is locked up in these cliffs!

Un risque de fuite massive est quasi nul puisque le CO₂ stocké géologiquement devrait franchir différentes barrières avant de pouvoir rejoindre l'atmosphère. En effet, plusieurs mécanismes contribuent à stopper la remontée du CO₂:

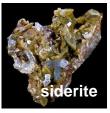
Temps depuis la fin de l'injection (années)

Interactions géochimiques entre le CO₂, l'eau interstitielle et la roche réservoir

snoonb


Carbonate formation

- 1. $CO_{2(gaz)} \Leftrightarrow CO_{2(aq)}$
- 2. $CO_{2(aq)} + H_2O \Leftrightarrow H_2CO_3$
 - 3. $H_2CO_3 \Leftrightarrow H^+ + HCO_3^-$
 - 4. $HCO_3^- \Leftrightarrow H^+ + CO_3^{2-}$
 - 5. $Me^{2+} + HCO_3^- = MeHCO_3^+$ (Me=Ca²⁺, Mg²⁺, Fe²⁺)
 - 6. $Me^{2+} + CO_3^{2-} = MeCO_{3(aq)}$


- $Mg^{2+} + CO_3^{2-} \Leftrightarrow MgCO_3$ (magnésite)
- $Fe^{2+} + CO_3^{2-} \Leftrightarrow FeCO_3$ (sidérite)
- $Ca^{2+} + Mg^{2+} + CO_3^{2-} \Leftrightarrow CaMg(CO_3)_2$ (dolomite)
- $Mg_2SiO_4 + 2CO_2 + 2H_2O \Leftrightarrow 2MgCO_3 + H_4SiO_{4(aq)}$ (forsterite) (magnesite)
- $CaSiO_3 + CO_2 \Leftrightarrow CaCO_3 + SiO_2$ (Wollastonite)
- $Fe_2SiO_4 + 2CO_2 + H_2O = 2FeCO_3 + H_4SiO_4$ (Fayalite)

RECHERCHES AU LABORATOIRE GEOSCIENCE ENVIRONNEMENT TOULOUSE (GET)

Programmes nationaux et internationaux:

ACI Energie et Conception Durable (2004-2007)(MRTN)
PICOREF (2005) (RTPG)

ANR-CO2 (ANR): Géocarbone-carbonatation (2005-2008)

GRASP Marie-Curie Network Program (EU RTN, 2006-2010)

MIN-GRO (EU, ESTN, 2005-2009) et MIN-EST (EU, RTN, 2007-2010)

CARBFIX site *pilot en Islande (2006-2011; 2011-2014)*

CIMENT Lafarge Carbonatation de l'olivine (2011-2012)

CO2MET: Rôle du CO₂ dans le transfert des métaux par les fluides géologiques: applications à la métallogénie et à la séquestration du CO₂ (2011-2013)

ANR: CO2-FIX (2009-2012) In situ [bio]-mineralization in mafic

and ultramafic context: A combined experimental and numerical approach

CNRT-CO2 (2013-2014): Expertise sur la faisabilité d'injection de CO₂ dans

les roches mafiques et ultramafiques en Nouvelle Calédonie

Détermination expérimentale des paramètres clés (thermodynamiques et cinétiques) qui contrôlent la précipitation des carbonates pendant et après l'injection de CO₂ (séquestration minérale)

TECHNIQUES EXPERIMENTALES

UV-Vis et IR

Stefánsson et al., 2013

Cellules potentiométriques

Bénézeth et al., 2009

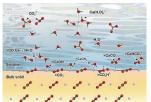
Vitesses de dissolution/précipitation et biominéralisation

Pokrovsky and co-workers

Acquisition de données fondamentales

Réacteurs à circulation (GEOM)

6.5 mm 6.5 mm


Gouze, Godard et al., 2012

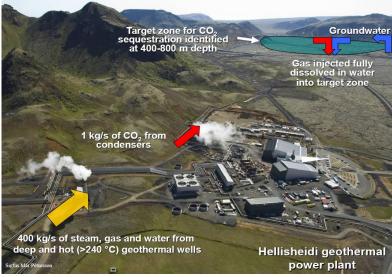
Etudes des interfaces à l'échelle nanométrique (Munich, G. Jordan)

HAFM Jordan et al., 2006

Speciation chimique et fractionnement isotopique aux interface solides-solution

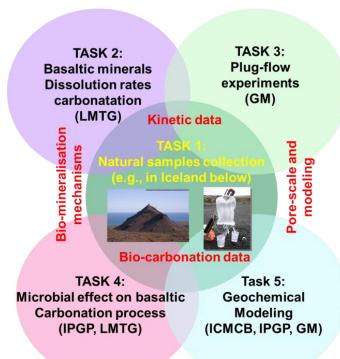
Pokrovsky et al., 2000

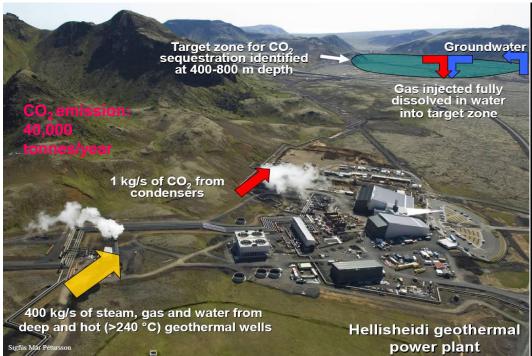
CO2-FIX: [Bio]-minéralisation du CO₂ in-situ en context basique et ultrabasique


- GET, Toulouse, P. Bénézeth
- IPGP, Paris, B. Ménez
- ICMCB, Bordeaux, D. Bernard
- Géosciences Montpellier, M. Godard

BUT: développer, grâce à un programme expérimental et numérique soigneusement planifié, les bases scientifiques fondamentales pour la généralisation des méthodes de séquestration dans les roches basaltiques

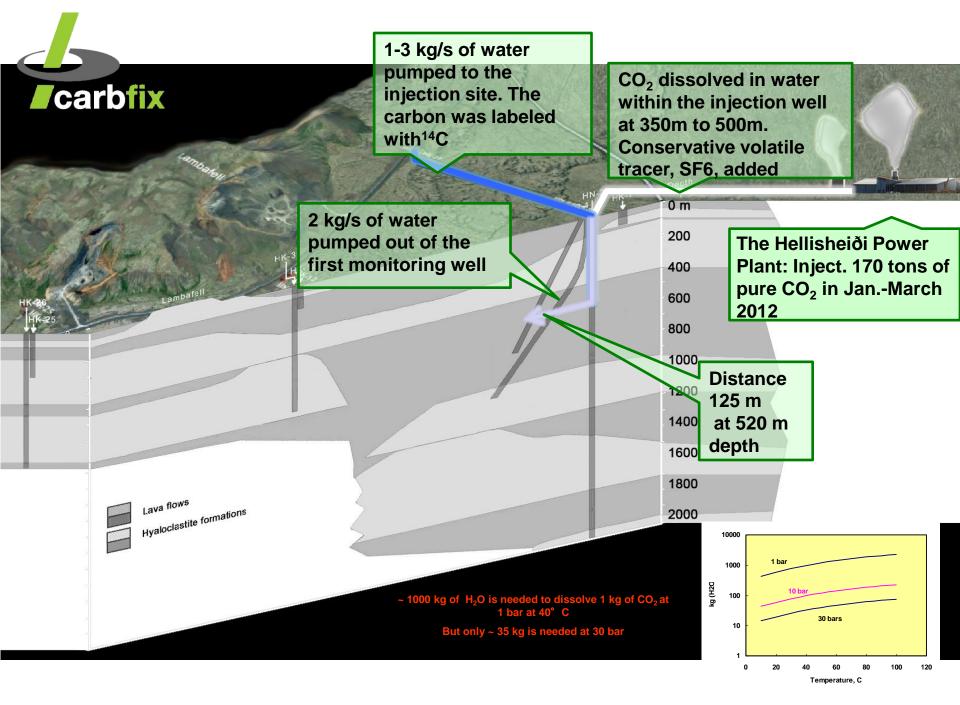
THE HELLISHEIDI, ICELAND PROJECT (CARBFIX)

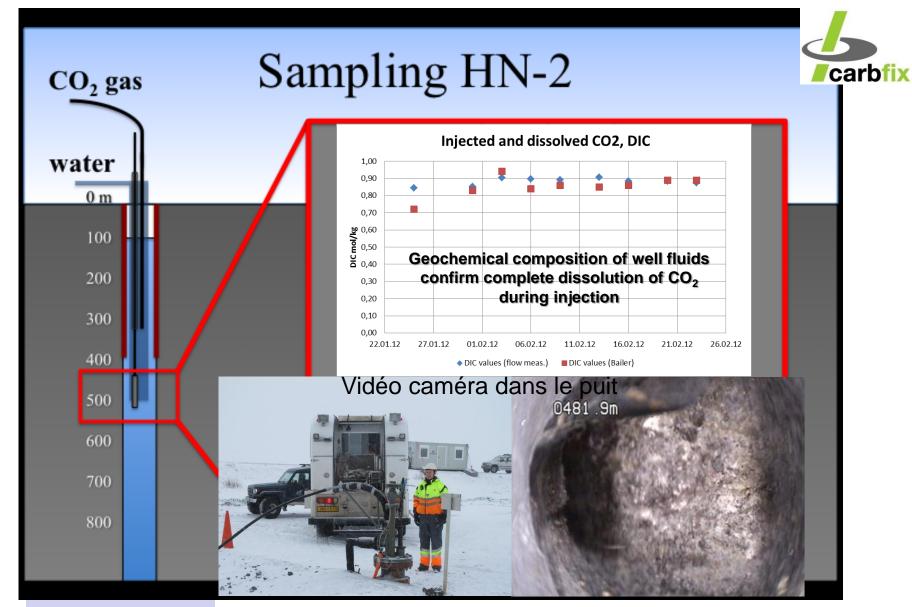


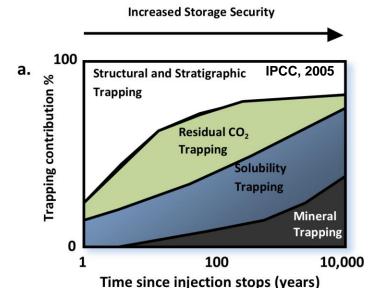

5 taches intégrées et complémentaires

- (1) déterminer les propriétés thermodynamiques et cinétiques de certaines réactions mises en jeu et rechercher les conditions physico-chimiques permettant la séquestration minérale optimale du CO₂,
- (2) quantifier à une échelle intermédiaire la distribution de phases minérales secondaires dans les fractures et leurs effets sur la perméabilité,
- (3) évaluer l'impact microbiologique sur le devenir du CO₂ et notamment la minéralisation,
- (4) développer un modèle des interactions fluidesroches basaltiques à l'échelle du pore.

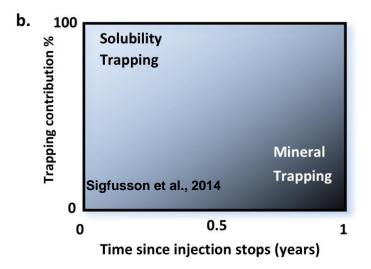
The Carbfix project: Hellisheidi Iceland




- Industrial/academic collaborative project. OR, HI, CNRS, Columbia University NY, UCPH and Amphos 21.
- Pure CO₂ injection 175 tons completed
- Injection of 1000 tons geothermal gas mixture from gas separation station (75% CO₂, 24% H₂S, 1% H₂) in 2013
- Gases are dissolved 20°C water at 23-25 bars 300-350 m in the injection hole.
- Formation temperature 30-80°C
- Laboratory experiments, geochemical modeling, tracer tests and extensive monitoring of injection site.


Pre-injection sampling (initial state)

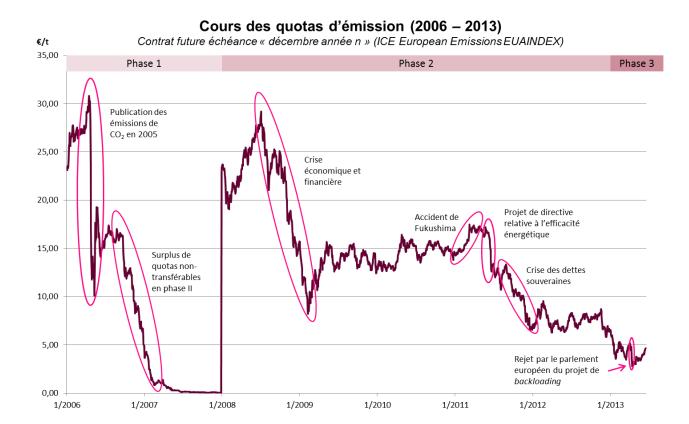
Post-injection sampling


Sigfusson et al. 2013

dissolution du CO₂ avant son injection

- Elimine une trop forte réactivité du basalte proche du puits d'injection
- Elimine les effets gravitaires
- Réduit les risques de fuite
- Accélère la séquestration minérale

Basalt Photo: J. Ale



CO₂ dissolved in water

Photo: H. Sigurdardottin

80% du CO₂ transformé en carbonate en 1 an (Gislason & Oelkers, Science 2014)

Selon l'IEAGHG-AIE les coûts d'une installation CCS s'élève entre \$30 et \$100 par tonnes de CO2 stocké, avec une répartition entre la capture, le transport et le stockage respectivement d'environ 20 à 80 \$ par tonne capté, 1 à 10\$ par 100km transporté, et 2 à 5\$ par tonne stocké. En prenant une marge supérieure à 100\$ la tonne de CO2 stocké, et pour des tonnages de 500 kt par an et par installation, le stockage s'élèverait autour de 50 millions de US \$ par an.

CONCLUSIONS

Pour les décennies à venir les énergies fossiles fourniront une part importante du mix énergétique mondial.


Il faut impérativement baisser les émissions de CO₂ mais aussi augmenter le prix de la tonne de CO₂

Le CCS est une technologie de transition qui doit être mis en place afin de permettre aux énergies renouvelables de continuer à se développer et à être utiliser.

Besoin de sites pilotes et démonstrateurs autre que pour des fins industrielles pour valider les concepts et les méthodes et s'assurer que le stockage géologique du CO₂ est fiable et sur pour l'homme et son environnement

MERCI POUR VOTRE ATTENTION

(<u>pascale.benezeth@get.obs-mip.fr</u>) (<u>http://www.get.obs-mip.fr/profils/Benezeth_Pascale</u>)

